Гл ава II

ПРИНЦИПЫ ПЕРИФЕРИЧЕСКОЙ ОРГАНИЗАЦИИ
НА ПРИМЕРЕ КОЖНЫХ РЕЦЕПТОРОВ И
СЕТЧАТКИ. РАЗМЕР ВОЛЮННА. РЕЦЕПТИВНЫЕ ПОЛЯ.
ДУБЛИРОВАНИЕ РЕЦЕПТОРОВ В МОЗГЕ

1. Введение. История электрофизиологических исследований

Значительная часть чувствительной поверхности тела обращена к внешнему миру, и из этого большого примитивного органа чувств в процессе эволюции развились сгруппированные в определенных местах структуры, приспособленные для специфических целей. К ним принадлежат также некоторые органы, направленные на восприятие пространства, например достигшие высшей степени развития рецепторы сетчатки, которые способны воспринимать астрономические расстояния; изучавшиеся Фитцджеральдом (1940) вибриссы некоторых хищников, воспринимающие прикосновение предметов несколько дальше от поверхности тела, чем волосы обычной длины, и, наконец, температурные рецепторы, развивающиеся у некоторых змей в своего рода специальный глаз, воспринимающий инфракрасные лучи. Импульсы от этих чувствительных к теплу структур изучались недавно Беллком и сотрудниками (1952, 1953).

При этом группировки в сочетании со специализацией получили большое развитие в классической психофизике в связи с открытием Бликсом (1882—1883, 1884), работавшим в Лунде, точечного представительства ощущения холода, тепла и давления. Изучение осзательных, болевых точек и тому подобных стало с тех пор признанной частью психологии кожи, так же, как волоски Фрей и различного рода альгезиметры стали входить в стандартный набор оборудования физиологических лабораторий большинства учебных заведений. Фрей (1895) высказал мнение о том, что концевые колбы Краузе (1860) являются холодовыми рецепторами, а цилиндрические окончания Руффини (1891—1892, 1894), возможно, служат тепловыми рецепторами. Многие другие концевые органы связывали со специфической чувствительностью того или иного рода, однако здесь совершенно не следует повторять сведения о чувствительных аппаратах кожи, которые можно найти в любом учебнике (см. также классические работы Фрей, 1894а, b, 1895, 1910). Я упомянул о восприятии тепла и
холода, поскольку эти примеры будут служить нам моделями при последующем обсуждении вопроса о специфичности различных видов кожної чувствительности и о трудностях их идентификации. В настоящее время интерес к установлению связи между чувствительными точками и определенными структурами ослабел. Причины этого лежат в современных тенденциях развития физиологии и поэтому заслуживают некоторого внимания.

Еще в ранних исследованиях встречались трудности идентификации различных видов кожної чувствительности. В то время «ощущение» часто рассматривали как нечто простое и отличное от «восприятия», которое считали в значительной мере результатом обработки первичных данных, получаемых от органов чувств. Такое разграничение, по-видимому, обосновано, поскольку чувствительное восприятие может быть развито в большей или меньшей степени в зависимости от важности для организма получаемой информации. В целом, однако, разделение между ощущением и восприятием потеряло свое значение (ср. Грахэма, 1951); из гл. VIII настоящей книги, если не раньше, станет ясным, что ощущение представляет собой в высшей степени сложный процесс. Поэтому старый вопрос о том, каким структурам соответствует то или иное ощущение, часто оказывается лишеным смысла, за исключением тех случаев, когда речь идет о высоко специализированных структурах или когда проблема ставится в самом общем плане.

Базет с сотрудниками (1932) пытались по возможности полно определить число различных ощущений, получаемых с определенного участка кожи (praeruptum), который затем гистологически исследовали. Авторы не смогли выделить более 4 типов ощущений (тепла, холода, осаждания и боли), хотя участок содержал 7 отчетливо различимых видов окончаний.

Еще в 1905 г. Руффини писал: «С 1891 г. до настоящего времени благодаря применению более избирательных методов с хлористым золотом и метиленовым синим число известных видов окончаний значительно увеличилось, так что, по-видимому, не будет преувеличением сказать, что кожа как на своей поверхности, так и в толще буквально заполнена нервыми окончаниями. И если до этого времени число известных функций было значительно больше числа структур, то в настоящее время, напротив, последние оказались структурой многочисленными» (стр. 422).

Это служит примером одного из многих положений в биологии, когда крайний рационалист ожидает получить не то, что эмпирик. Первый мог бы сослаться на известный афоризм Оккама (обрывку Оккама): entia non sunt multiplicanda praeter necessitatem (сущности не преумножаются без нужды). Однако позиция биолога более скромна. Он должен допустить, что недостаточно хорошо знает природу, чтобы понять ее потребности или «нужды». Именно поэтому он и экспериментирует. Некоторые гистологические «сущности», возможно, существуют для того, чтобы облегчить...
различение, обеспечивая большую изменчивость реакции. Так, один освязательные рецепторы адаптируются быстро, как, например, рецепторы, первоначально описанные Эдрианом и Цоттерманом (1926b), другие — очень медленно, как рецепторы, обнаруженные Франкеншайзером (1949) у кролика и представляющие собой неорганизованные окончания, разбросанные в коже. Некоторые рецепторы, возможно, не связаны с тем, что мы называем восприятием (что является психологическим понятием). Многие из этих трудностей связаны с различным толкованием и не обесценивают сути электрофизиологических исследований.

Находя изолированное тельце Пачини (это достаточно легко сделать на внутренней поверхности сухожилий; (Эдриан и Умрат, 1929) и в особенности на брыжейке, где они видны в виде не-больших прозрачных овалов, выделяющихся на еще более прозрачном фоне), электрофизиолог может показать, что оно дает разряд импульсов при легком прикосновении или натяжении. Гаммон и Бронк (1935) обнаружили, что эти быстро адаптирующиеся органы достаточно чувствительны, чтобы реагировать на пульсацию сосудов брыжейки (ср. Дженранд и Цоттерман, 1946), и очень похожи в этом отношении на медленно адаптирующиеся прессорецепторы стенки каротидного синуса (Бронк и Селла, 1932, 1935; Эйлер, Лильстранд и Цоттерман, 1941).

Тельца Пачини видны невооруженным глазом, имея в длину до 2 мм. Они состоят из концентрических слоев, располагающихся вокруг столбика с расширением на конце, и, таким образом, превосходно приспособлены к восприятию локальных изменений давления. Умпульсы, возникающие в них при действии давления, впервые были зарегистрированы Эдрианом и Умратом (1929) на перве, иннервирующем подошвенную фасцию задней ноги кошки (о более поздних работах, посвященных генераторному потенциалу в тельцах Пачини, см. гл. I, раздел 3). На основании подобных опытов можно сделать вывод, что эти структуры, где бы они ни находились, обладают одинаковой специфичностью, как это и предполагали для тельца Пачини, например Раубер (1867), Шумахер (1911) и Шеррингтон (1900b). Последний писал: «Расположение тельца Пачини в мышце благоприятствует их сдавливанию, особенно когда они находятся в глубине угла, образуемого соединительнотканным перегородкой или апоневрозом и косо идущим мышечным пучком» (стр. 1010). Шумахер, показавший, что базальный конец тельца Пачини всасуляризован, указывает также, что эти тельца тесно связаны с сосудами брыжейки и поэтому должны реагировать на изменения кровяного давления (ср. Шихан, 1933). Обзор старой литературы относительно тельца Пачини и их открытия дан у Грея и Малькольма (1950).

Можно упомянуть и о других затруднениях. Ощущение как понятие, доступное измерению, психофизически оценивается в единицах CGS, однако точная оценка ощущения органов, скрытых
Глава II

в глубине кожи, затруднительна. Ощущение так же, как и импульсы, возникающие в ответ на прикосновение и давление, вызывается деформацией кожи; причем распределение сил деформации вокруг чувствительных образований неизвестно. Тепло и холод распространяются с определенным градиентом во всех направлениях. Следовательно, определение ощущения в единицах системы CGS может ввести в заблуждение. Точное раздражение часто является лишь абстракцией. Далее, некоторые качества ощущения могут быть не столь «основными», какими их обычно считают1. Мне, например, представляется, что между модальностями «прикосновения» и «давления» есть лишь количественная разница в интенсивности. Практически оба эти ощущения отличаются друг от друга меньше, чем качества «красный» и «зеленый». Зуд или ощущение щекотки кажутся мне самостоятельными качествами, однако по достаточно веским как электрофизиологическим (Цоттерман, 1939), так и клиническим данным (ср. Причард, 1932; Уолш, 1948) они являются результатом сочетания активности рецепторов осаждения и боли, а возможно и одних только слабо раздражаемых болевых рецепторов.

Определение специфичности при помощи электрофизиологии имеет свои ограничения (оно, например, невозможно в случае зуда). Однако, чтобы отнести какое-нибудь периферическое афферентное волокно к температурной, тактильной или к какой-либо другой рецепции, необходимо выбрать адекватное раздражение при помощи данного чувствительного механизма, воспринимающего определенное качество независимо от того, заключается ли специфичность в форме рецептора, различаемой под микроскопом, или в чем-либо ином. Нетрудно подыскать примеры свойственной нервной ткани чувствительности к специфическим агентам. Имеется огромное количество работ по химическому раздражению нервных волокон. Хорошо известно также механическое раздражение (Тигерштедт, 1880). В нашей лаборатории значительное внимание было обращено на большую чувствительность самих нервных волокон к изменениям температуры (Бернард и Гранит, 1946; Эйлер, 1947; Гранит и Лундберг, 1947; Лундберг, 1948). Эйлер обнаружил, что тонкие афферентные волокна специфически дают разряд импульсов на повышение температуры всего лишь на несколько градусов по сравнению с нормальным уровнем, тогда как толстые волокна реагируют на понижение температуры. Эти эффекты чрезвычайно избирательны, и переход от тепловой реакции к холодовой наблюдается при диаметре волокон около 5—6 μ. Тонкие афферентные волокна не реагируют на изменения температуры (Эйлер). Недавно Додт (1953) показал, что волокна диаметром менее 5—6 μ реагируют также

1 Говорят о «модальностях», например слухе, зрении, ощущении боли и температуры, осаждении, и в пределах каждой модальности различают «качества», например цвет, тон и т. д.
на охлаждение и не реагируют на нагревание. В его работе приводятся и другие данные наблюдений относительно температурной чувствительности нервных волокон. Таким образом, здесь имеется своего рода специфичность, возможно, примитивная по сравнению со специфичностью чувств, но явно достаточная для того, чтобы уже при незначительном развитии в определенную сторону она могла дать два вида температурных концевых органов, по внешнему виду не похожих ни на концевые колбы Краузе, ни на цилиндрические кончения Руффини.

Выражением крайней степени специализации являются рецепторы сетчатки, воспринимающие свет интенсивностью в несколько квантов (Крис и Эйстер, 1907; Гехт, Шлер и Пирен, 1942; Боуман и Вандервельден, 1947; Баемардт, 1950; Пирен, 1953), и не менее замечательные механорецепторы кортнева органа, которые реагируют на колебания, равные по амплитуде долям диаметра атома водорода (Бекен и Розенблют, 1951). Специфичность этих образований настолько исключительна, что и структурно они должны обладать большим своеобразием.

Меньшая степень специфичности обнаруживается в неорганизованных кончениях. Веддел и сотрудники (Хаген и др., 1953; Синклер и др., 1952) определяли число осозательных, болевых, холодовых и тепловых точек на единицу кожной поверхности уха, предплечья и кончиков пальцев (безымянный палец правой руки). Разница в количестве таких точек в различных участках оказывалась очень небольшой, причем везде имелись все четыре вида чувствительности. Кожа уха оказалась хорошо иннервированной, хотя там отсутствуют такие организованные кончения, как концевые колбы Краузе, цилиндрические кончения Руффини или осозательные тельца Мейснера; но холод, тепло и давление все же воспринимаются. Хрящ не содержит нервных элементов, кроме волокон, сопровождающих кровеносные сосуды. В кончике пальца содержатся как свободные, так и организованные кончения. О последних Веддел и сотрудники пишут:

«Среди тонких ветвящихся кончений не удалось найти каких-либо определенных различий; в группе же организованных кончений, по-видимому, существуют непрерывные и постепенные переходы концевых органов от наиболее простых до самых сложных, от поверхностных, слабо инкапсулированных, до в высшей степени сложных чувствительных телес, заключенных в толстую капсулу. Если бы не желание строго классифицировать каждое найденное кончание, мы были бы вынужденными признать, д что никакая обоснованная классификация невозможна. Один вид кончения незаметно переходит в другой благодаря существованию многих промежуточных форм. Следовательно, наши гистологические данные подтверждают обычно игнорируемое утверждение Руффини1, который отмечал существование промежуточных форм

1 Руффини (1905).
4 Р. Гранит
и указывал на бесполезность строгой классификации». Можно добавить, что многие другие гистологии (см., например, Штер, 1928), а также психологи (Нейф, 1942; Морган, 1951; Дженткинс, 1951) придерживаются этой же точки зрения.

Пятьдесят лет назад Шеррингтон (1900а), описывая кожное восприятие, 20 страниц посвятил «обычным чувствам», таким, как щекотка, дрожь, пульс, чувства и т. д. Можно с некоторым основанием предположить, что многие из этих высоко дифференцированных ощущений связаны с небольшими вариациями периферических структур, различные комбинации которых создают сигнализацию, соответствующим образом расшифровываемую центрами мозга.

С точки зрения электрофизиологии, как мы увидим ниже, эта проблема представляется в несколько ином свете. Специфичность определяется по раздражителю, для которого порог возникающего разряда в данном нервном волокне наиболее низок. Идентификация специфического концевого органа имеет своей конечной целью анализ его физико-химических свойств при помощи микрометодов. (Последние, однако, до сих пор еще не применяли в отношении кожных органов.) Поскольку афферентные нервы должны иметь какие-то окончания, вполне естественно, что в коже существует множество точечных рецепторов разных видов. Это было прерывисто показано предшествовавшими исследователями, несмотря на многочисленные затруднения, о которых речь шла выше. Естественным отправным пунктом электрофизиологических исследований является гистология кожной иннервации. В коже имеются организованные окончания, расположенные в разных местах, а также интересные сплетения, похожие на мочку пряжки, описанные еще в конце прошлого века (лучшее для того времени описание дано Ретциусом, 1892). Позднее Вуллард (1935—1940), введя прирожденную окраску метиленовым синим, снова обратил внимание на эти сплетения. После смерти Вулларда работа была продолжена его бывшим сотрудником Ведделом (1945). Преимущество данного метода заключается в том, что он позволяет прослеживать как волокна, так и их окончания. Необходимо признать, что в настоящее время гистология далеко опередила физиологию, а электронный микроскоп увеличивает этот разрыв еще на несколько сот лет.

Из работы Вулларда и Веддела следует, что кожное нервное сплетение состоит из двух слоев дихотомически ветвящихся нервных волокон, образующих сеть, от которой к эпидермису, а также к волоскам отходят четкобразные оконечные волоконца (см. фиг. 18). На фиг. 19 воспроизведены некоторые из рисунков Ретциуса. Разветвления каждого волокна контактируют с разветвлениями соседних волокон, и одно волокно иннервирует участок, размеры которого, по-видимому, соответствуют области, занимаемой всеми разветвлениями данного волокна. Наличие нервных сетей двух видов было известно уже Фрею (1894b), который
писал: «В настоящее время невозможно решить, что означает эта двойная иннервация с физиологической точки зрения, если нижняя сеть служит для восприятия давления, а другая — возможно, для восприятия боли» (стр. 296). Уотерстон (1933) показал, что эпителий вместе с его нервными окончаниями можно срезать,

не вызывая никаких других ощущений, кроме ощущения прикосновения. Эти результаты были подтверждены Вуллардом (1936—1937), который утверждал, что нервные окончания в эпидермисе человека, едва и их можно рассматривать как дополнительный орган осознания. Субэпидермальная нервная сеть, по достоверным данным, служит для восприятия боли (Вуллард, Веддел и Гаршман, 1940). Одно нервное волокно делится на определенное количество веточек, подходящих к нескольким концевым органам одиничного типа, а также к многочисленным и перекрывающим друг друга иннервационным аппаратам волосков. Так, например, число
группа волосяных сумок снабжается веточками по крайней мере от двух основных нервных волокон. То же самое относится и к отдельным волоскам, так что одиночный волосок может иннервироваться 15 конечными разветвлениями (Веддел, 1945). Интересно отметить, что Фрей (1894a) нашел вокруг ствола волоска до 15 точек, чувствительных к давлению.

Инкапсулированные или организованные другим образом окончания обычно также располагаются группами (телца Мейсснера, Пачини и Меркеля). Множественная иннервация
обнаружена лишь у волосков; однако несколько соседних инкапсулированных окончаний одного и того же типа могут быть иннервированы каждое в отдельности или веточками одного и того же нервного волокна. Получены данные, указывающие на связь телец Мейсснера с осением и концевых колб Краузе (когда они имеются) с ощущением холода (см. сводку, Хензел, 1952). Интересно, что хорошо известная иннервация волосков и инкапсулированных окончаний добавочным волокном, на которую обратило внимание большое число авторов (для ссылок см. Вуллард, Веддел и Гарпман, 1940), описана также и для нервной сети, воспринимающей боль. Как указывали Вуллард (1936), Веддел (1945) и Ле-Гро-Кларк (1947), это дает простое объяснение тому наблюдаемому Фреем (1894а) факту, что любой специфический стимул, если он достаточно интенсивен, вызывает боль. Если пороговое давление (прикосновение) составляет около 2—3 г/мм², то для возникновения в той же самой осознательной точке ощущения боли нужно приложить силу 200 г/мм² (Фрей, 1894а).

С электрофизиологической точки зрения в разрешении проблемы кожной иннервации, как и других органов чувств, существуют четыре основных направления: 1) изучение специфической реакции на адекватное раздражение (прикосновение, давление, температуру и т. д.), описывание и изучение чувствительных окончаний с целью идентифицировать их микроскопически при помощи микрометодов; 2) анализ реакции от точки зрения общих принципов организации (одним из таких главных принципов является организация рецепторов одинакового типа в рецептивные поля); 3) исследование важного вопроса о значении размера нервных волокон; 4) наконец, выяснение при помощи электрофизиологических средств роли добавочных нервных волокон.

2. Общие данные об афферентных нервных окончаниях в коже

При регистрации в достаточно тонкой веточке смешанного нерва импульсов, пробегающих по миелиновым волокнам разного размера, обращает на себя внимание различная высота пиков. Было обнаружено (Эрлангер и Гассер, 1937; Гассер и Груденфест, 1939), что относительная величина пиков в A-волокнах различного диаметра пропорциональна скорости проведения возбуждения, которая в свою очередь пропорциональна диаметру волокна (Харш, 1939а, b; Тасаки, 1953). Недавно Раштон (1951) свел все наблюдения Гассера, Эрлангера, их сотрудников и других авторов, касающихся скорости проведения возбуждения и диаметра волокон, в теоретическую схему, в основу которой положено расстояние между соседними перехватами Ранье. Для целей настоящего изложения достаточно понять, что в очень тонких пучках нерва при наличии разницы в высоте пиков обычно можно сказать, что эти пики возникают в афферентных волокнах, проводящих возбуждение с разной скоростью (об исключениях из этого правила
см. Пейнтал, 1953). Таким образом, не расщепляя нервный пучок на отдельные волокна, их можно раздифференцировать при этом, однако, условий, что нерв содержит волокна различного размера. Поперечный срез кожного нерва, приведенный на фиг. 20, показывает, что это действительно имеет место. Следовательно, как высота пиков, так и скорость проведения возбуждения, связанные с размером волокна, являются важными показателями при анализе специфической чувствительности, о чем в дальнейшем будет упомянуто неоднократно. Эрлангер (1927) первый показал, что различным видам специфической чувствительности часто соответствуют афферентные волокна разного диаметра.

В 1934 г. Гассер дал сводку ранних и более поздних работ, в которых пытались связать специфическую чувствительность кожи и других рецепторов конечностей с различными волокнами. Эти попытки состояли в сдавливании нерва, действующем и непосредственно как давление, и через вызываемое сдавливанием асфиксие (ср. Франкенхейзер, 1949), и в опытах с местной анестезией. Полученные при помощи электрофизиологических определения размеров волокна результаты показывали, что при сдавливании первыми поражаются толстые волокна, а местная анестезия действует сначала на тонкие волокна (Гассер и Эрлангер, 1929). Однако между результатами, полученными разными авторами, существовали значительные различия. Позже Франкенхейзер (1949) провел опыты, в которых показал, что быстро и медленно адаптирующиеся нервные волокна в коже кролика имеют одну и ту же скорость проведения возбуждения, хотя первые переносят сдавливание значительно лучше, чем вторые. Эти данные не отрицают возможности подобного анализа при помощи сдавливания на том основании, что толстые волокна повреждаются раньше тонких, однако ясно, что такой метод не может быть точным. Уже в то время существовало много электрофизиологических исследований на препаратах одиночных нервных волокон, отходящих от различных рецепторов, а в дальнейшем число подобных наблюдений возросло. Полная сводка соответствующих данных была сделана Хензелом (1952). Я в дальнейшем упомяну о конкретных данных при переходе к описанию
окончаний афферентных волокон в коже. Они подтверждают вывод Гассера, повторенный им в 1943 г., что нервные волокна, относящиеся к разным модальностям, должны иметь различные размеры.

Это утверждение не следует понимать в том смысле, что существует полное распределение кожної чувствительности соответственно волокнам разного диаметра. Холод и тепло, как мы увидим ниже, воспринимаются лишь тонкими волокнами и целиком «перекрываются» болевыми волокнами. Пейнталь (1953а), исследуя афферентные волокна блуждающего нерва, обнаружил, что средняя скорость проведения возбуждения в волокнах медленно адаптирующихся рецепторов растяжения легкого составляет 36 м/сек, быстро адаптирующихся рецепторов — 25 м/сек, депрессируемых рецепторов — 33 м/сек, рецепторов правого предсердия — 20 м/сек, хеморецепторов — 10 м/сек, рецепторов, реагирующих на инъекцию фенилэтиламина, — 6 м/сек. Сведения о других рецепторах приведены у Хензела (1952).

В отношении боли до настоящего времени сохраняет свою ценность вывод Гассера (1943), что значительное большинство болевых волокон должно относиться к амнилиновым волокнам, обладающим наименьшим диаметром и проводящим возбуждение со скоростью менее 2 м/сек. Они дают характерное массивное ощущение жжения, длительную или «вторичную боль», в то время как «быстрые» волокна, проводящие возбуждение со скоростью 15—20 м/сек или более, по-видимому, ответственны за начальную или «первичную боль» (булавочный укол), которая ощущается слишком быстро после раздражения, чтобы ее можно было объяснить участием амнилиновых волокон. К приведенному четко сформулированному Гассером положению добавить нечего. В качестве руководящих ссылок для изучения данных, относящихся к этому вопросу, можно рекомендовать ряд статей (Рансон и Биллингсли, 1916; Эдриан, 1931а; Цоттерман, 1933; Хейнбеккер, Бишоп и О’Лири, 1933; Хейнбеккер, О’Лири и Бишоп, 1934; Кларк, Хьюгс и Гассер, 1935; Цоттерман, 1936, 1939; Вуллард, Веддел и Гарпман, 1940; Джернанд и Цоттерман, 1946; Марухаши и др., 1952). Особенно интересны ранние опыты Рансона и Биллингсли, выполненные в ту эпоху исследований, когда еще не применяли электроники. Используя то обстоятельство, что у кошки тонкие волокна входят в латеральную часть корешков обоссечно, они избирательно перерезали их, делая небольшой надрез в спинном мозге; после этого характерные для боли рефлексы исчезали. К сожалению, у человека подобное расположение проводящих путей не обнаружено. Лишь в области, иннервируемой тройничным нервом, имеются тонкие волокна, которые можно отделить от остальных. На этой особенности строения основана операция Шёквиста (1938) — перерезка бульбоспинального тракта тройничного нерва, приводящая к полной потере болевой чувствительности лица и подтверждающая,
Глава II

tаким образом, данные электрофизиологии (ср. Цоттерман, 1933, 1936).
Тактильные волокна, по-видимому, особенно варьируют по величине, так что самые толстые из них проводят возбуждение со скоростью 90 м/сек, а самые тонкие — со скоростью 2—20 м/сек. Это и следовало ожидать, учитывая, что тактильные волокна берут начало от таких различных структур, как чувствительные окончания вокруг волосков и инкапсулированные окончания, такие, как тельца Мейсснера, Пачини и Меркеля (см., например, Вуллард, 1936; Веддел, 1945). Для детальной разработки этого вопроса необходимо локальное отведение при помощи микроэлектрода (Эдриан и Цоттерман, 1926б; Эдриан, 1928, 1932б; Цоттерман, 1939; Марухаши и др., 1952; Хензел, 1952). Большая часть ранних работ (после работ Эдриана) была выполнена на коже лягушки (Дан и Финли, 1938; Эдриан, Кеттел и Хогленд, 1931; Кеттел и Хогленд, 1931; Талаат, 1933; Хог, 1935; Эхлин и Проппер, 1937; Фессар и Зегерс, 1943).
Смещения экспериментаторов обычно направлены в сторону изоляции одиночных волокон. Однако с точки зрения ощущения, а также для понимания того, какой эффект может оказывать простой раздражитель, не меньший интерес представляют данные, полученные на тонких пучках нервных волокон, отходящих от данной области кожи. Такие исследования провел Цоттерман (1939); из его работы взята фиг. 21, на которой показано распределение скоростей проведения импульсов в ответ на различные раздражители. В некоторых случаях величины получены путем прямого измерения, в других — они вычислены, исходя из высоты пиков.
Легкий удар по шерсти кошки (фиг. 21, I) возбуждает как медленные, так и быстрые волокна; очень легкое прикосновение (III и VII) возбуждает волокна, проводящие импульсы со скоростью около 2 м/сек и перекрывающие, таким образом, болевые волокна. Данные Уотерстона (1933) показывают, что по крайней мере у человека возбуждение, возникающее в ответ на легкое прикосновение, также проводится очень тонкими волокнами.
Следует отметить, что импульсы самых тонких амиелиновых волокон отводятся обычно суммарно в виде реакции многих волокон. Цоттерман получил четкие данные о том, что боль (ожог) возбуждает именно эти волокна. Ниже будет показано, что возбуждение самых тонких миелиновых (а также, вероятно, и амиелиновых) волокон возникает в ответ на такие различные раздражители, как сильный удар и очень легкое прикосновение. На оригинальных осциллограммах видно, что это возбуждение появляется с запозданием обычно в виде следового разряда, когда раздражение уже кончилось, даже в том случае, если это было только движение нескольких волосков. Цоттерман связывает эти разряды с ощущением щекотания или зуда, поскольку он обнаружил, что эти ощущения отсутствуют в соответствующей области.
лица у больных, подвергшихся операции Шёквиста. В таком случае ощущение щекотания является сочетанием ощущений прикосновения и боли. Наличие упомянутых выше добавочных болевых волокон, подходящих к волоскам, также является

Подтверждением этой точки зрения. Возможны два предположения: наличие двойной специфичности (см. ниже) — осзательной и болевой или, кроме того, взаимодействие между осзательным и болевым восприятием в нервной сети под эпидермисом. Поскольку в этой сети может происходить переплетение осзательных волокон с болевыми, взаимодействие вполне вероятно, как при действии давления (Гранит, Лексел и Скоглуэнд, 1944), так и без него (Арвапанаки, 1940). Мы видим, что имеется обширное поле для исследований кожных рецепторов и их афферентных волокон при помощи микрораздражения. Каковы бы ни были причины выраженности реакции в опыте Цоттермана, он показывает, что простое раздражение вызывает сложный комплекс реакций, и подчеркивает также необходимость при изучении ощущений

Фиг. 21. Частота распределения скоростей проведения импульсов, регистрируемых в ответ на различные раздражители (Цоттерман, 1939).

1 — легкий удар; 2 — подергивание нескольких волосков; 3 — очень легкое прикосновение; 4 — очень легкий удар; 5 — укол иглой; 6 — сильный удар; 7 — очень легкое прикосновение. В тр. 5, 6, 7 получены на одном и том же препарате нерва.

Данные для 4 — 7 вычислены, исходя из высоты пиков.
выйти за пределы анализа активности одиночных нервных волокон. На это указывал также Эдриан в одной из своих ранних работ (1928).

До сих пор в качестве основы для объяснения мы молчаительно принимали представление о специфичности. Это представление есть не что иное, как известный закон Мюллера о «специфических энергиях» в его современном виде, а именно: специфичность концевых органов соответствует специфичности центральных структур. Есть ли причины критиковать этот закон с электрофизиологической точки зрения? Недавно Хенцел и Цоттерман (1951б) зарегистрировали в язычном нерве кошки два типа афферентных импульсов, возникающих в ответ на давление: больших пиков «обычного типа», проходящих в волокнах диаметром 12—15 μ, и меньших пиков, проходящих в волокнах диаметром 8—10 μ. Эти волокна реагируют также на охлаждение; однако, в то время как специфические холодовые рецепторы (от которых отходят волокна еще меньшего диаметра) дают постоянный разряд импульсов при определенной температуре, чувствительные к холду прессорецепторы реагируют лишь в течение нескольких секунд. При этом прямое влияние охлаждения на сами нервные волокна, по-видимому, исключено, что подтверждается удовлетворительными контрольными опытами, а также результатами более поздних исследований Додта (1953) по температурной чувствительности нерва. Большой «прессный» пик может возникнуть лишь при таком холодовом раздражении, которое способно возбудить непосредственно само нервное волокно. Таким образом, эти волокна отличаются от тонких прессорных волокон тем, что они обладают специфической чувствительностью только к давлению. Высокая чувствительность к холоду в некоторых афферентных волокнах скорее определяется тончайшими нервными окончаниями, чем самыми концевыми органами.

Недавно Беллок и Фаульштук (1953) сообщили, что одиночные афферентные волокна лицевой ямки гремучей змеи, специфически чувствительные к инфракрасному излучению, участвуют также в восприятии прикосновения. Цоттерман и Хенцел не касались закона Мюллера. Они полагали, что сочетанные прессо-холодовые рецепторы обладают тем, что я назвал двойной специфичностью вследствие наличия некоторых общих основных принципов деятельности термо- и механорецепторов. О другом возможном объяснении этого явления уже упоминалось выше. Кроме того, нужно учитывать высвобождение в нервной сети веществ, обладающих возбуждающим действием (Эхлин и Проппер, 1937; Фент, 1933; Хог, 1935), что очень убедительно показал Хэбгуд (1950).

В настоящее время, однако, двойная специфичность в том смысле, что оба «прибора» имеют относительно низкие пороги возбуждения, по-видимому, является исключением. Обычно же афферентное волокно связано с одним или несколькими рецепто-
рами, реагирующими на один определенный, так называемый адекватный, раздражитель с гораздо большей легкостью, (т. е. с самым низким порогом возбуждения), чем на все остальные раздражители. Следовательно, относительная величина пика и скорость проведения импульсов в сочетании с определением адекватного раздражителя в современной практике до сих пор являются двумя способами электрофизиологической характеристики рецептора.

Какова роль размеров волокна в связи с вопросом о центральной расшифровке частотного кода? Гассер (1943) указывал, что значение большей скорости проведения возбуждения состоит в способности импульсов в толстых волокнах вызывать или облегчать те процессы, которые затем продолжают развиваться под влиянием импульсов в тонких волокнах. Он также обратил внимание на большую длительность пиков в тонких волокнах. Следовательно, определенные центральные системы для своей деятельности могут нуждаться в пиках большой длительности. В значительной части работ Гассера (см., например, Эрлангер и Гассер, 1937) показано, что в волокнах разного типа существуют значительные различия в отношении медленного, так называемого следового, потенциала, следующего за пиком. Неизвестно, играют ли эти различия какую-либо существенную роль в тонких окончаниях. Сам Гассер подчеркивал значенние временных отношений. Чем больше наблюдается, с какой исключительной точностью развиваются процессы в центральной нервной системе, тем больше это поражает. Чем больше становится ясным значение представления о временных отношениях, тем в большей степени оно определяет направление будущих исследований. Различная скорость проведения возбуждения по аксонам должна играть роль в механизме нервной деятельности. Даже если только в этом состоит роль упомянутых различий в процессе интеграции, эта роль все же значительна (Гассер, 1946, стр. 141).

К сказанному можно добавить, что размер волокон, вероятно, как-то связан с приемными стацией в различных частях мозга. Почему, например, число таких волокон в инсилатеральном зрительном тракте значительно больше, чем в контралатеральном (Бишоп, Джереми и Лансе, 1953; подтверждено также Гранитом)? Как мы увидим дальше, органы чувств имеют проекционные зоны, отличные от хорошо известных специфических зон.

3. Терморецепторы как пример специфичности.
Дублирование в центрах

Среди кожных чувств особый интерес представляет восприятие температуры. Отчасти это объясняется большим количеством и сложностью психофизических теорий (обзор см. Хензел, 1952). Между тем эти теории относительно просто проверить, регистрируя потенциалы действия, а также сравнивая полученные при
этом данные с результатами прямого термического раздражения периферического нерва. Как правило, холодовые и тепловые рецепторы в высшей степени специфичны (Цоттерман, 1935, 1936), причем возбуждение от обоих видов раздражения проводится по относительно тонким волокнам (4—6 μ). В языке кожи тепловые волокна дают по величине большие пики, чем холодовые волокна, что вновь было подтверждено Додтом и Цоттерманом (1952а). Благодаря психофизическим опытам Хензела (1952), разработавшему прекрасное приспособление для раздражения, и электрофизиологическим опытам Хензела и Цоттермана, а также Додта и Цоттермана, мы в настоящее время знаем о температурных рецепторах больше, чем о любых других кожных органах чувств. Именно поэтому результаты этих опытов заслуживают самостоятельного рассмотрения в связи с проблемой специфичности, в том виде как она представляется в свете двух хорошо изученных видов кожной чувствительности.

![Diagram](image)

Ф и г. 22. Импульсы в одиночных холодовых волокнах язычного нерва кошки, возникающие в ответ на резкое понижение температуры на 2° (Хензел и Цоттерман, 1951а)

***I* — при изменении температуры с 44 до 42°; **II** — при изменении температуры с 42 до 40°; **III** — при изменении температуры с 40 до 38°. Отметка времени 0,02 сек.

Как и следовало ожидать, эти органы ведут себя так, как другие плохо адаптирующиеся рецепторы. На резкое раздражение они отвечают начальным высокочастотным разрядом импульсов, постепенно переходящим в редкую постоянную импульсацию. На фиг. 22 показана реакция такого рецептора при понижении температуры на 2°, начиная с трех разных уровней: 44, 42 и 40°. Наиболее эффективна реакция в последнем случае (фиг. 22, **III**). При достаточно низких температурах редкие им-
пульты продолжаются неопределенно долгое время; в этом смысле каждый холодовой рецептор ведет себя как термометр, способный давать сведения о действительной температуре в окружающей среде. Некоторые зрительные рецепторы и рецепторы растяжения ведут себя таким же образом по отношению к их адекватным раздражителям. С этими рецепторами, а также с большинством других концевых органов (Эдриан и Цоттерман, 1926а, б) холодовые рецепторы имеют еще то общее свойство, что реагируют на градиент интенсивности раздражения во времени. Быстрое охлаждение вызывает более сильный начальный разряд импульсов, чем медленное охлаждение. Обе эти особенности реакции были обнаружены в раннюю эпоху психофизических исследований (сводку см. Бенцел, 1952), однако электрофизиологический анализ внес в этот вопрос такую ясность, что дальнейшие обсуждения не нужны.

Ф и г. 23. Зависимость частоты постоянного разряда импульсов в разных изолированных холодовых волокнах язычного нерва кошки от температуры языка (Бенцел и Цоттерман, 1951а).

Я думаю, что существование оптимума чувствительности холодовых рецепторов, как ясно видно из фиг. 22, является наиболее интересной особенностью механизма восприятия холода. На фиг. 23 показаны результаты такого исследования на нескольких холодовых рецепторах. Кривые зависимости частоты конечного постоянного разряда импульсов от температуры имеют наивысший подъем при температурах, различных для разных рецепторов. В области оптимума изменение температуры на 1° вызывает разряд с частотой 2 имп/сек или 20% от максимальной частоты. Поскольку рецепторы можно рассматривать как органы, реагирующие на нарушения химического равновесия, вызываемые изменениями температуры, специализация их в определенных температурных пределах, несомненно, является лучшим решением проблемы специфичности, чем равномерная чувствительность.
органна по всему воспринимаемому диапазону. У некоторых рыб имеется такой орган — ампулы Лоренцини, который на повышение температуры реагирует учащением, а на ее снижение — замедлением спонтанных разрядов импульсов (Занд, 1938). Чувствительная к теплу лицевая ямка гремучей змеи также принадлежит к органам этого типа (Беллак и др., 1953). У млекопитающих, по-видимому, имеется более сильная дифференциация. Концевые колбы Краузе, ответственные за ощущение холода, также сильно варьируют по форме, как показал Белошокин (1933) на препаратах из области соска человека, где эти рецепторы представлены особенно густо и где сильно развита чувствительность к холду. При одновременном действии многих дифференциально чувствительных к холоду концевых колб они перекрывают диапазон от 40 до 20°C с приблизительным увеличением общей частоты разряда. Заманчиво предположить, что такое дробное подразделение всего диапазона имеет и некоторые свои цели. Оно, например, может иметь определенное значение в терморегуляции; так, рецепторы с максимальной чувствительностью к низким температурам, возможно, более активны, чем другие рецепторы, вызывают определенные компенсаторные терморегуляционные рефлексы. В настоящее время это, однако, остается лишь предположением, основанном на общем представлении о значительно большей важности терморегуляции у млекопитающих по сравнению с пойкilotермными животными, например рыбами.

Хенцел и Цоттерман (1951с), а также Хенцел, Штрём и Цоттерман (1951), прикладывая термодаты к обеим сторонам языка кошки, измерили температурный градиент и латентный период появления пиков и при помощи этого сумели довольно точно (до 0,2 мм) локализовать холодовые рецепторы на определенной глубине. Однако на основании гистологических данных (окраска серебром по Пальмырсу) они сделали вывод только о том, что холодовые рецепторы расположены субэпителиально, отчасти в папилях (главным образом в их основании или несколько глубже). Во всяком случае, язык богато снабжен концевыми колбами Краузе (Краузе, 1860, стр. 112—139; Гейрс, 1953).

Тепловые рецепторы (Додд и Цоттерман, 1952а) реагируют на нагревание так же, как холодовые рецепторы на охлаждение. Область, в которой наблюдается их реакция, показана на фиг. 24. Среди тепловых рецепторов также имеется дифференциация в отношении положения оптимума чувствительности, однако по сравнению с фиг. 23 вся группа кривых сдвинута вправо. Тем не менее кривые настолько перекрывают друг друга, что различить устойчивые тепловые рецепторы от устойчиво холодовых в одном и том же участке кожи было бы трудной задачей, если бы не было вторичных признаков. Такие признаки существуют. Холодовые рецепторы дают разряды с постоянной частотой импульсов; тепловые же рецепторы реагируют нерегулярными группами.
импульсов, и их частота значительно ниже, чем у холодовых рецепторов. Размеры волокон представляют собой еще один признак. Как мы увидим дальше, когда речь идет о различении, ведущим принципом всегда являются различия в конфигурации возбуждения, что, по-видимому, достигается статистическим распределением чувствительности отдельных рецептивных единиц (см. фиг. 23 и 24).

Фиг. 24. Зависимость частоты постоянного разряда импульсов в разных одиночных и парных тепловых волокнах от температуры языка (Додт и Цоттерман, 1952a). ○ одиночные волокна; ● парные волокна.

Холодовые рецепторы имеют высокую степень специфичности. Это, возможно, лучше всего иллюстрируется известным явлением парадоксального ощущения тепла, открытым независимо друг от друга Леманом (1892) и Фреем (1895, 1910), т. е. явлением ощущения тепла в ответ на раздражение теплом от 45° и выше. Додту и Цоттерману (1952b) удалось показать, что при высоких температурах в холодовых рецепторах возникает соответствующий разряд импульсов, чему соответствует вторичный подъем кривой зависимости частоты импульсов от температуры (фиг. 25); для сравнения дана аналогичная кривая для типичного теплового рецептора (Додт и Цоттерман, 1952a). При этом раздражаются также и болевые волокна (Цоттерман, 1939); поскольку порог болевой чувствительности для нагревания находится около 47—48° (Скоуби, 1952), своеобразная осторога парадоксального ощущения тепла может объясняться примесяю болевого ощущения (ср. Цоттерман, 1953). Функцию холодовых и тепловых рецепторов при крайних температурах исследовал далее Додт (1952b). Изолированные холодовые волокна изучали также Марухаши, Мицуру и Тасаки (1952). Волокна были взяты из абдоминального
кожного и подошвенного нервов конечности (диаметром 1,5—3 μ), которые являются более тонкими среди миелиновых волокон.

Ф и г. 25. Зависимость частоты постоянного разряда импульсов в типичных одиночных холодовом и тепловом волокнах (Додт и Поттерман, 1952а). О холодовом волокне (вторичный подъем кривой соответствует парадоксальному разряду импульсов в холодовом волокне при высоких температурах): ● тепловое волокно.

Наблюдения над температурными рецепторами показали, что они дают постоянную импульсацию при любых температурах, при которых обычно находится организм. Это свойство, по-видимому, особенно важно в связи с их ролью в терморегуляции, для осуществления которой требуется постоянная информация от этих рецепторов. В данном случае рецепторы работают совместно с терморегуляционным центром гипоталамуса, который изучается в течение многих лет в ряде лабораторий. По этому вопросу можно сослаться на сводки Тауэра (1939), Рансона и Мэгун (1939), Рансона (1940), Штоля (1943), Гранта (1951), Хензела (1952) и Поттермана (1953). Несколько новых экспериментальных работ было опубликовано Увнэссом и его сотрудниками Стрёмом и Фолковом (Фолкв, Стрём и Увнэс, 1949а, b; Стрём, 1950а, b, c), использовавшимся в качестве показателя расширение сосудов.

С нашей точки зрения главная проблема состоит в существовании
терморецепторов в самом мозге. В соответствии с первоначальными наблюдениями школы Райсона (Мэгун и др., 1938; Битон и др., 1941; Хемингуэй и др., 1940) Фолков, Увьэс и Стрём (в особенности см. Стрём, 1950а) нашли также, что передний отдел гипоталамуса чувствителен к локальному нагреванию точечной диатермической иглой, но не чувствителен к охлаждению.

Другой новый подход к рассматриваемому вопросу дал Эйлер (1950), который заметил, что местное нагревание области гипоталамуса вызывает появление локального медленного потенциала.

Фиг. 26. Одновременная запись температуры (I) ствола мозга и температурного потенциала (II) точки, лежащей на 0,3 мм кпереди от переднего края хиазмы, на 0,5 мм латеральнее третьего желудочка мозга и на 1,5 мм кзади от вентральной границы мозга (Эйлер, 1950).

Кошка под уретановым наркозом. Нижняя часть кривых является прямым продолжением верхней. При данном положении электрода не наблюдаются изменения потенциала, связанные с изменением кровяного давления или дыхания. Температурный потенциал следует за изменениями температуры лишь в ограниченном участке. Запись прерывали каждые 30 с., Ретушировано.

Этот медленный потенциал, который можно получить лишь в пределах очень ограниченного участка переднего отдела гипоталамуса, показан на фиг. 26. Он соответствует терморегуляционному рефлексу нагревания и является наиболее чувствительным из всех известных показателей. Следовательно, эта центральная реакция чрезвычайно специфична. Действительно, в наиболее удачных случаях Эйлер получал изменения потенциала на 1 мв при изменении температуры на 0,1°. Однако подобный эффект в ответ на охлаждение нигде в мозге не наблюдался. Эйлер предполагает, что этот «тепловой» потенциал является генераторным.

5 Р. Гранит
Глава II

потенциалом для регуляторных рефлексов одышки, потоотделения, расширения сосудов и т. д. Следовательно, местная реакция в гипоталамусе на нагревание означает, что тепловые рецепторы представлены также и в мозге.

Тепловые рецепторы гипоталамуса особенно важны ввиду относительного недостатка периферических тепловых рецепторов по сравнению с холодовыми рецепторами (ср. Кёниг, 1943, 1944). Рефлекс с последних могли бы легко привести к перепроизводству тепло и задержке его отдачи вследствие сокращения сосудов кожи. Термальные рецепторы мозга, реагирующие на температуру крови, предотвращают это. Следовательно, они выполняют роль тормоза в механизме саморегуляции при осуществлении гомеостазиса.

Тот факт, что рецепторы могут дублироваться в мозге, улучшая определенные виды саморегуляции в организме, открывает новые возможности, в особенности в деятельности хеморецепторов. Эйлер и Зедеберг (1952а, b) выяснили, что при увеличении во вдыхаемом воздухе содержания CO₂ в дыхательном центре продолжатого мозга, реагирующим, как известно, на изменения парциального давления CO₂ в артериальной крови (см., например, Гейманс и Букерт, 1939), возникает медленное изменение потенциала. Эффект был очень специфичен в отношении CO₂ и получился лишь в том участке мозгового ствола, в котором Комрё (1943) удалось вызвать дыхательную реакцию при помощи инъекции нескольких тысячных долей миллилитра забуференного раствора карбоната. Эйлер и Зедеберг обнаружили этот эффект и в полностью денервированном дыхательном центре; эффект сопровождался возникновением разрядов импульсов в нервах, идущих к дыхательным мышцам. Таким образом, эти структуры имеют все характерные свойства рецепторов: специфическую химическую чувствительность, генераторный потенциал и разряды импульсов.

Как известно, Верье (1947) пришел к заключению, что в области развивлений внутренней ветви общей сонной артерии существуют рецепторы, специфически чувствительные к изменению осмотического давления. Инъекция гипертонического солевого раствора тормозит диурез, оказывая действие на антидиуретический гормон задней доли гипофиза. Андерсону (1952, 1953) удалось вызвать сильную жажду у коз, вводя им в паравентрикулярные ядра 0,1 мл 1,5—2-процентного раствора NaCl. Эйлер (1953) получил в этой области мозга медленные локальные изменения потенциала порядка 1 мВ при таких же инъекциях в сонной артерии, как это делал Верье. Все эти наблюдения над имеющимися в мозге рецепторами открывают новую важную область исследований в физиологии органов чувств. Не будет удивительным, если окажется, что и многие другие составные части крови влияют на рецепторы, связанные с функциями, регулируемыми через гипофиз.
4. Рецептивные поля.
Другие особенности организации кожных рецепторов

Согласно первоначальному определению Эдриана и его сотрудников, относящемуся к кожным рецепторам лягушки (Эдриан, Кеттел и Хогленд, 1931; Эдриан, 1932), «рецептивным полем» называют поверхность, иннервируемую одиночным афферентным волокном. Таким образом, по крайней мере у лягушки, рецептивное поле — это не только физиологическая или функциональная единица, но и определенная анатомическая величина. Анатомический критерий в случае подобного определения не является простым повторением. Ниже мы увидим, что значительно более сложные рецептивные поля глаза позвоночных, будучи анатомически постоянными, варьируют по размерам вследствие различной степени взаимодействия противоположных эффектов внутри поля. Показано, что тактильные поля, определяемые посредством перемещений тонкой струи воздуха по коже, чрезвычайно разнообразны по размерам (от 4 до 100 мм²) и перекрывают друг друга так, как это показано на фиг. 27. Оба эти фактора — перекрытие и вариабельность размеров — свойственны также глазу и уху (см. ниже). Перекрывание обусловлено разветвлением одного или нескольких афферентных волокон в одном и том же участке кожи. Ясно, и это вполне понимал Эдриан, что все эти особенности являются составными частями механизма различения, свойственного совершенно особого рода приемнику — центральной нервной системе. Из работы Эдриана с рецептивными полями лапы кошки и кожи морской свинки видно также, что соседние рецептивные поля могут отличаться друг от друга по своей проекции в мозге, поскольку импульсы из них передаются по волокнам самых различных размеров (Эдриан, 1931а, 1932б). Тоэй (1940), измеряя площадь рецептивных полей на роговице, нашел, что они распространяются на очень большие участки от 50 до 200 мм². По-видимому, еще не совсем ясно, служат ли эти рецепторы для восприятия одной боли или боли и прикосновения одновременно, как в других случаях двойной специфичности. Большинство авторов (например, Фрей, 1894а, б; Нейф и Вагнер, 1937) полагает, что роговица чувствительна лишь к боли (см. обсуждение у

Фиг. 27. Участки кожи лягушки, снабжающиеся тактильными окончаниями различных нервов (Эдриан, Кеттел и Хогленд, 1931; Эдриан, 1932а). Видно значительное перекрытие на периферии.
Тоуэра, 1940, а также недавние работы Ялависто, Орма и Таваста, 1951, по ощущению прикосновения на роговице. Как показали недавние опыты Б. Рекседа и У. Рекседа (1951; см. также приведенную в этой работе литературу), свободные окончания в роговице широко разветвляются. Тоуэра нашел, что рецептивные поля наиболее чувствительны в центре. В глазе это свойство поля особенно ярко выражено (см. ниже).

Тасаки и сотрудники (Марухаши и др., 1952) исследовали рецептивные поля различных кожных рецепторов и нашли, что поля волокон, воспринимающих давление, имеют точечные размеры (1—2 мм²); на лапах кошки центральные поля подошвенной подушечки также невелики (до 3×3 мм), а размеры полей заросших волосами участков подошвы примерно в 10 раз больше. Наиболее интересным является то, что они нашли специальные волокна с чрезвычайно большими рецептивными полями (до 50×90 мм). Эти волокна реагировали на легкое прикосновение и имели диаметр 2—5 μ; их много имелось во всех изученных кожных нервах. Специально исследовали рецептивные поля афферентных волокон, отходящих от корней волосков. В пределах поля размером 20×25 мм можно получить ответ, стибающий каждый отдельный волосок или даже касаясь его кончика. В работе отмечены также афферентные волокна, по-видимому, специфически чувствительные только к почесыванию.

Суммируя эти данные, я прихожу к выводу, что на чувствительной поверхности кожи, которую можно рассматривать как прототип всех органов чувств, хорошо видны многие элементарные принципы периферической организации чувствительности. Раздражители, называемые прикосновением, давлением и болевым агентом, вызывают общую и локальную реакцию. Общая информация основана на реакции очень больших рецептивных полей, тогда как локальная — осуществляется меньшими рецептивными полями вплоть до точечных. Рецептивные поля очень сильно перекрывают друг друга. Эти принципы организации повторяются и в других органах (например, глаз и ухо), построенных как чувствительные поверхности. Вполне вероятно, что между степенью специфичности концевого органа и количеством разветвлений чувствительного нерва существует обратная зависимость.

Различение на этой основе и общие принципы декодирования частотного кода будут рассмотрены в гл. VIII.

Относительно видов кожной иннервации, известных большинству физиологов и нейробиологов под названием «протопатической» и «эпикритической» чувствительности (Хед, Риверс и Шеррер, 1905; Риверс и Хед, 1908), писали много. Трудно, однако, что-либо добавить к справедливой критике этих положений Уолшем (1948).

Рецепторы могут быть функционально связаны друг с другом не только на основе принципов рецептивного поля. В зрении, например, восприятие пространства и расстояния достигается
путем интегрирования корреспондирующих точек на обеих сетчатках. Это изучали главным образом при помощи психофизических методов и совсем не исследовали электрофизиологически. В одном и том же участке кожи рецептивные поля для большинства видов чувствительности создают такое же интегрированное ощущение локализации. Я приведу лишь один пример такой интеграции, относящийся к коже; он выбран мною потому, что, несколько мне известно, это единственный случай, хорошо изученный электрофизиологически (Хагбарт, 1952). Исторически этот пример является развитием представления Шеррингтона (1906, 1910) о рецептивном поле рефлекса. Шеррингтон, конечно, употреблял термин «репеттивное поле» в другом, более широком смысле, обозначая им участок кожи, с которого можно было вызвать рефлекс определенного типа. Таким образом, специфический рефлекторный эффект является признаком, характеризующим чувствительность данного участка кожи.

Хорошо известно, что из инсилатеральных рефлексов в ответ на раздражение какого-либо нерва легче всего вызвать сгибательные рефлексы, которые могут быть или центральными или рефлексами позы (Шеррингтон, 1910). Последними при популярном изложении обычно пренебрегают и часто изображают рефлекс инсилатерального сгибания как целиком центральным. Однако можно обнаружить также и разгибательные сокращения, замаскированные общей сгибательной активностью (см., например, Шеррингтон и Сутона, 1910—1911). Скрытый разгибательный рефлекс, который так трудно вызвать и исследовать, был назван Денин-Бруном (см. Крид и др., 1932) «остаточным инсилатеральным разгибанием». Хагбарт (1952) внес ясность в этот вопрос, показав, что между мышцей и покрывающим ее участком кожи, существует определенная функциональная связь. Установленное Хагбартом правило очень просто: кожа и мышца функционально связаны друг с другом, так что мышца возбуждается стимулами, исходящими из соответствующего ей участка кожи; раздражение соседних участков кожи может оказывать тормозной эффект. Это справедливо как для сгибателей, так и для разгибателей. Таким путем ранее незамеченный

Ф и г. 28. Схема расположения тормозных (−) и возбуждающих (+) участков кожи для разгибателей стопы.

Результаты, полученные на двух спинных кошках. A — возбуждающий участок необычно мал; B — возбуждающий участок относительно велик. Штриховка показывает местоположение изучаемых мышц. О силе ответа можно судить по густоте отметок.
ипсилатеральный экстензорный рефлекс может быть легко обнаружен. Участки кожи, с которых для разгибателей стопы получаются возбуждающие и тормозные эффекты, схематически показаны на фит. 28. На фит. 29 представлены кривые, полученные при пощипывании кожи над этой областью. Испытание производили на примере моносинаптической передачи возбуждения (методика подробно описана в гл. VI). Для понимания результатов, представленных на фит. 29, нужно только знать, что величина моносинаптического залпа увеличивается во время облегчения (кривая I) и уменьшается во время торможения (кривая II). Тот же результат можно получить электромиографически, а также регистрируя мышечные сокращения. Подобное же испытание, проведенное на дезэффецирированной конечности, показывает, что этот эффект прямой, а не вторичный и не зависит от процессов, вызываемых рефлекторно из афферентной зоны регистрируемой мышцы или ее антагониста.

Таким образом, кожа обладает локальными признаками, существенными не только для сознательного ощущения, что было практически известно с самого начала рефлексологии, но и для рефлекторной деятельности.

5. Рецептивные поля сетчатки позвоночных

Принцип различения при помощи перекрывающих друг друга полей различных размеров действительно должен быть важным, иначе вряд ли он достиг бы столь высокого совершенства в таком органе, как сетчатка, которая является наиболее сложным чувствительным аппаратом у позвоночных и, по-видимому, у многих беспозвоночных. Поскольку развивались такие мельчайшие по величине органы, как палочки и колбочки, можно было бы думать, что смысл этого тончайшего зерна (по аналогии с фотографической пластинкой) состоит лишь в воспроизведении деталей и, следовательно, между чувствительными клетками и нервыми волокнами вплоть до самой центральной нервной системы должно быть соотношение 1 : 1. Однако этого не может быть, поскольку у глубоководных рыб (Бейлисс, Литто и Тенсли, 1936) с чрезвычайно тонкими удлиненными палочками количественное отношение между палочками и волокнами зрительного нерва особенно велико. В общем, колбочки как органы, приспособленные к большой остроте зрения и дневному свету, несколько толще,
чем палочки, воспринимающие свет при помощи больших, сильно конвергирующих единиц, в которых на нервное волокно приходятся сотни или тысячи рецепторов. Лишь у сравнительно немногих видов с хорошо развитой центральной ямкой фовеальные колбочки становятся тонкими и похожими по виду на палочки. Если предположить, что чувствительный к свету зрительный пурпур локализован в наружной части рецепторов (Гранит, Холмберг и Цеви, 1938; Литто, 1940), то весьма вероятно, что одно из значений "тонкости зерна" заключается в увеличении поверхности (Бейлисс и др., 1936). С другой стороны, нельзя отрицать, по аналогии с фотографической эмульсией, что воспроизведение деталей требует дисперсных единиц (зерна) с определенным минимальным размером, определяемым в конце концов совершенством оптической системы глаза (хрусталика, роговицы).

Этот вопрос (на который мое внимание впервые обратил в 1922 г. проф. Гельб из Франкфурта-на-Майне) относится к старому спору между Гельмгольцем и Герингом. Гельмгольц заявил, что если бы оптик дал ему такую плохую линзу, как та, которая имеется в глазу, то он вернул бы ее назад. Геринг возразил Гельмгольцу, что, возможно, оставил бы ее, если бы знал, какие изумительные компенсирующие приспособления имеются в глазу для улучшения изображения (в первую очередь контраста). С того времени линзы и фотографические эмульсии значительно улучшились, а глаз с его несовершенной оптикой остался тем же самым, выполняя, однако, свою задачу в широких пределах от смертельного освещения до яркого солнечного света лучше, чем любой имитирующий его инструмент.

Представление о том, что хорошее воспроизведение требует тонкости зерна, с несомненностью подтверждается сравнительным изучением числа оптических нервных волокон у животных различных видов. У глобуса, у которого в сетчатке преобладают колбочки, несмотря на значительно меньшие размеры глаз, имеется почти такое же число зрительных волокон, как и у человека. Брэш и Эри (1942) для человека дают 1 010 000, для глобуса 988 000, а для такого животного с преимущественно палочковой сетчаткой, как кошка, — только 119 000 зрительных волокон. Поляк (1941) для человека установил 800 000—1 100 000 и более. У кошки нервные волокна особенно толстые, хотя глаз по величине не намного меньше, чем глаз человека. Таким образом, размеры зерен (с точки зрения нашей аналогии с фотографической эмульсией) должны будут определяться размерами рецептивного поля одночного волокна зрительного нерва.

Итак, мы приходим к выводу, что, хотя конвергенция от рецепторов до волокон зрительного нерва в среднем очень велика, предположим порядка 100 : 1, тем не менее поверхность сетчатки способна к довольно хорошему различению на основе тех же самых принципов, которые справедливы и в отношении кожи, т. е. при помощи перекрывающих друг друга рецептивных полей.
разной величины, от очень больших до очень маленьких. Последнее, по-видимому, более многочисленны в колбочковых глазах, имеющих высокую остроту зрения. Наличие вслед за рецепторами двух слоев клеток, имеющих общее происхождение с центральной нервной системой, приводит к дальнейшей обработке сигнализации, прежде чем она поступает в волокна зрительного нерва.

Ф и г. 30. Схема строения сетчатки приматов, основанная на результатах, полученных при помощи метода Гольджи (Поллак, 1941).

I — пигментный слой; II — слой палочек и колбочек (a — наружная зона, b — внутренняя зона); III — наружная пограничная мембрана; IV — наружный ядерный слой (a — наружная зона, b — внутренняя зона); V — наружный сетчатый слой (a — наружная зона, b — внутренняя зона); VI — внутренний ядерный слой (a, b, c, e — его четыре зоны); VII — внутренний сетчатый слой; VIII — слой ганглиозных клеток; IX — слой зрительных волокон; X — внутренняя пограничная мембрана.
1 — палочки; 2 — колбочки; 3 — горизонтальные клетки; 4, 5, 6, 7 — биполярные клетки; 8, 9 — амакриновые клетки; 10, 11, 12, 13, 14 — ганглиозные клетки; 15 — радиальные волокна Мюллера.

Это делает сетчатку особенно интересной как модель того, что может происходить в центрах мозга. Так, ограничение количества рецептивных полей числом путей (волокон зрительного нерва), передающих код импульсов, по-видимому, не обязательно должно приводить к ухудшению информации, если только сами переда-
ваемые сигналы достаточно обработаны и модулируются доста-
tочным числом маленьких рецептивных полей. Таким образом,
зрительное восприятие является динамическим актом, поддержи-
ваемым постоянными изменениями частоты импульсов, а не
статической картиной, подобной изображению на фотографи-
ческой пластинке.

Фиг. 31. Схема строения сетчатки приматов (Поляк, 1941).
Показано распространение импульсов от фоторецепторов к другим элементам сетчатки и
к мозгу, а также от мозга назад к сетчатке (направление указано стрелками). Обозна-
чение слов и зон то же, что и на фиг. 30.
1, 2 — палочки и колбочки, или фоторецепторы, в которых нервные импульсы возникают
при действии света (на схеме раздражается светом лишь левая группа рецепторов);
3 — горизонтальные клетки, при помощи которых импульсы передаются окружающим
палочкам и колбочкам; 4, 5, 6, 7 — афферентные биполярные клетки: шванкообразные,
щетковидные, плоские и карликовые, передающие импульсы от фоторецепторов к гангли-
оидным клеткам, а также биполяры, служащие анализаторами; 8 — биполярная клетка,
разводящий амакриновых клеток, которая, вероятно, получает импульсы от афферент-
ных биполяров, от ганглиозных клеток, а также от мозга посредством афферентных
волосков (19) и передает их фоторецепторам (1, 2); 9 — амакриновая клетка, которая,
возможно, "перехватывает" часть импульсов от биполяров и распространяет их в окружаю-
щие участки; 10, 11, 12, 13, 14 — ганглиозные клетки, получающие импульсы от аффе-
рентных биполяров и посылающие их в мозг по своим аксонам, называемым волокнами
зрительного нерва.

На фиг. 30 и 31, взятых из работы Поляка (1941) по сетчатке
приматов, показаны оба дополнительных нейрона, расположенных
после рецепторов и называемых биполярными и ганглиоз-
ными клетками. Показаны также, боковые связи с одной сто-
роны, при помощи горизонтальных клеток, расположенных на
уровне ножек палочек и колбочек, с другой — при помощи амакриновых клеток, расположенных перед ганглиозными клетками. Имеются также и эфемерные элементы, о функции которых мало что известно (см. гл. III, раздел 5). На фиг. 30 число нервных элементов сильно уменьшено, однако характерные черты каждой разновидности клеток сохранены (расположение их тел, размеры, форма, распространение дендритов и осевых цилиндров); правильно передано и строение синаптических контактов.

Кроме электрофизиологического анализа сигналации, поступающей по зрительному нерву, выполненного при помощи микропреципирования (Гартлайн, 1935, 1938a, 1940a, 3; Томсон, 1953) или микроэлектродов (сводку см. Гранит, 1947, 1950b; более поздние работы — Раштон, 1949, 1953; Барлоу, 1953a, b; Каффлер, 1952, 1953) и давнего определенные сведения с точки зрения полей и медленных изменений потенциала, интересно разобрать гистологию сетчатки с большими подробностями, пользуясь схемами Кахала и Поляка. В настоящее время объяснение возможно лишь в общих чертах. Обращаясь в прошлое, к тому, что мы знали два десятка лет назад, я думаю, что вся трудоемкая работа с одиночными волокнами была не напрасна. Мы знаем, хотя и недостаточно, но все же многое относительно распространения возбуждения в сетчатке и можем ставить вопросы со значительно большей четкостью, чем раньше. Может быть верно также и то, что, если и существуют более простые структуры, чем сетчатка, удобные для изучения процессов синаптического возбуждения и торможения, это понимание принципов организации центральной нервной системы и передачи чувствительной информации никогда, вероятно, не будет более полным, чем наше представление о принципах, лежащих в основе образования и передачи сигналов в сетчатке.

В основе организации сетчатки лежат два последовательных слоя наложенных друг на друга рецептивных полей: рецепторы, конвергирующие на биполяры, и биполяры, конвергирующие на ганглиозные клетки. Об их активности мы судим по частоте импульсов, отводимых при помощи микроэлектродов. По крайней мере у приматов и птиц существуют карликовые биполяры (см. фиг. 30 и 31), которые в принципе способны передавать точную информацию на основе отношения 1:1 (от одиночной колбочки до волокна зрительного нерва, отходящего от ганглиозной клетки), но и эта информация также зависит от взаимодействия с соседними структурами, как это схематически показано на фиг. 30. Гистологическая картина ясно показывает перекрывание рецептивных полей, о чем свидетельствует также и функциональный анализ (Гартлайн, 1938a, 1940a, б). Имеется огромное количество возможностей для взаимодействия. Функционально взаимодействие было впервые показано Эдрианом и Меттьюс (1928). Таким образом, совместная работа перекрывающих друг друга рецептивных полей в данном случае значительно сложнее, чем в случае
кожной чувствительности, при которой тормозные процессы появляются лишь на уровне спинного мозга.

Как уже говорилось выше (гл. 1, раздел 7), Гартлейн (1938а) впервые показал, что характерные разряды импульсов в ответ на начало и прекращение освещения (эффект включения и эффект выключения) в волокнах зрительного нерва распределены по-разному. Существуют элементы с эффектом включения, элементы с эффектом выключения и элементы с эффектом включения — выключения, причем под термином «элемент» понимают одиночное волокно или ганглиозную клетку, активность которой регистрируется. Схематические реакции этих элементов показана на фиг. 17. Некоторые характерные записи разрядов импульсов приведены на фиг. 32 и 33. Волокна, реагирующие на прекращение освещения, тормозятся светом (см. гл. 1). Во всех типах глаз, изучавшихся до сих пор, элементы, реагирующие и на начало и на прекращение освещения, находятся в большинстве. Что касается толстых волокон, исключение составляет паучковый глаз морской свинки. Он содержит главным образом элементы с эффектом включения (Гранит, 1942а, б).

Фиг. 32. Влияние различных раздражений на характер реакции одиночного элемента сетчатки кошки (Гранит, 1943с).
Ⅰ — раздражение светом с энергией 6,3 (в относительных единицах) и длиной волны 620 μμ; Ⅱ — раздражение светом той же длины волны и с энергией 2,3; Ⅲ — раздражение светом с энергией 2,5 и длиной волны 460 μμ; Ⅳ — раздражение светом с длиной волны 500 μμ. Отмечена время 0,02 сек.

Фиг. 33. Влияние увеличения интенсивности раздражения на реакцию изолированного элемента сетчатки морской свинки (Гранит, 1942а).
Указаны относительные величины энергии раздражения (для верхней кривой — пороговая). Длина волны света 530 μμ; отметка времени 0,02 сек.

В нашей оценке этих характерных особенностей организации элементов сетчатки постепенно произошли некоторые изменения (см. Гранит, 1950б). 15 лет назад типы реакции считали относительно стабильными в том смысле, что каждое волокно специали-
зировано на определенный тип реакции. Это, возможно, остается справедливым для некоторых типов сетчаток, таких, как сетчатки лягушки и голубя (Доннер, 1953). У элементов сетчатки кошки, однако, существует очень большая изменчивость соотношения между эффектом включения и эффектом выключения (выявляемая по величине порога и частоте импульсов) в зависимости от уровня интенсивности света, длины волны и состояния адаптации (Гранит, 1944, Гранит и Тенсли, 1948; Джернанд, 1948в). Все это приводит к заключению, что изменчивость соотношения между реакцией на начало и реакцией на прекращение освещения является одним из главных показателей взаимодействия в сетчатке, что было подтверждено в дальнейшем исследованиями с применением поляризующего тока (о результатах этих опытов см. Гранит, 1950б). Действительно, пропуская слабый поляризующий ток через сетчатку, можно подавить или усилии реакцию на включение или реакцию на выключение при постоянном световом раздражении (Гранит, 1948). Наконец, Каффлер (1952) при помощи точечного светового раздражения глаза кошки показал, что в пределах рецептивного поля одночного волокна одни места дают реакцию на выключение, другие — на включение и что, сочетая два раздражения в разных местах поля, можно получить различные соотношения между обеими реакциями. Следовательно, весьма вероятно, что большинство элементов является элементами с эффектом включения — выключения просто потому, что это наиболее вероятное состояние соотношения между компонентами включения и выключения. Эффект включения — выключения преобладает в сетчатке кошки также и в тех случаях, если регистрировать не большие одночные пики, а пользоваться в качестве показателя групповыми разрядами маленьких пики (Бом и Джернанд, 1950). Взаимодействие создает пластичность реакции, причем одним из главных показателей, выражающих эту пластичность, является изменчивость соотношения эффекта включения и эффекта выключения.

Следующим шагом, по крайней мере в моем собственном понимании организации сетчатки, явилась наблюдаемая на глазе кошки тенденция к взаимному исключению компонент включения и выключения (фиг. 34), так что при изменении интенсивности раздражения эффект выключения уменьшается, тогда как эффект включения увеличивается, или наоборот (Гранит, 1944). Это хорошо показано также на фиг. 35, взятой из работы Доннера и Уилмера (1950). Существуют ли между ними антагонистические отношения? Этот вопрос впервые систематически изучали посредством поляризации сетчатки слабым электрическим током при помощи электродов, расположенных по обеим сторонам глазного яблока. Для понимания полученных результатов необходимо учесть, что, хотя соотношение эффекта включения и эффекта выключения изменчиво, все же даже в сетчатке млекопитающих можно различить описанные Гартлейном типы реакции, если
исследовать достаточно большое число элементов в одинаковых условиях (в нашем случае — на темноадаптированных животных при освещении всей сетчатки). Найдено, что одни элементы реагируют как чистые элементы с эффектом включения, другие — как чистые элементы с эффектом выключения, хотя большинство их отвечает как на начало, так и на прекращение освещения.

Ф и т. 34. Большие и маленькие пики (см. фиг. 36), вызываемые действием света с длиной волны 460 мк (Гранит, 1948).
Справа указана относительная интенсивность. Период освещения отмечен при помощи фотоэлемента и усилителя, сигналы с которого воздействуют на второй луч катодной трубки. Этот луч записывает также переменный ток с частотой 50 ц, однако при данной скорости движения пленки запись так сжата, что период длительностью 1 сек. пришлось отметить значками под кривой.

На резкую поляризацию электрическим током (сила которого близка к пороговой) изолированные элементы отвечают или возбуждением, или торможением. При изменении направления тока реакция извращается. Поляризующие электроды в таких опытах помещают в височной и носовой впадинах, а микроэлектрод на — внутренней поверхности сетчатки против назального электрода. При таком способе определения порогового эффекта поляризующего тока антагонизм между компонентами включения и выключения проявляется в том, что чистые элементы с эффектом включения реагируют разрядом импульсов на катод, а чистые элементы с эффектом выключения — на анод (Джернанд и Гранит,
1947). То же самое можно выразить иначе: элементы с эффектом включения тормозятся анодом, а элементы с эффектом выключения — катодом. Освещение и катод действуют одинаково: элементы с эффектом включения, возбуждаемые светом, возбуждаются также и катодом, а элементы с эффектом выключения, тормозимые светом и дающи́е импульсы при прекращении освещения, тормозятся катодом. Элементы смешанного типа с эффектом включения — выключения, судя по эффекту возбуждения, могут быть или «катодическими» или «анодическими». Этот

Ф и г. 35. Разряды импульсов (Доннер и Уилмер, 1950).

А — в элементе, реакция которого при увеличении интенсивности (I) раздражения меняется от «эффекта включения» до «эффекта включения — выключения»; Б — в элементе, реакция которого при увеличении интенсивности (I) раздражения меняется от «эффекта включения — выключения» до «эффекта выключения». Длительность раздражения 3 сек.

антагонизм между «включением» и «выключением» нельзя объяснить изменением положения точки отведения по отношению к распределению поляризующего тока. На фиг. 36 представлены кривые, записанные при помощи одного и того же микроэлектрода от двух волокон. Ясно видно, что соседние элементы с эффектом включения — выключения имеют противоположную полярность. (Приведенные на фиг. 34 кривые, иллюстрирующие взаимный антагонизм двух элементов при различных интенсивностях света, взяты из того же опыта, что и кривые, представленные на фиг. 36.)

Возможно, что самой простой демонстрацией взаимоисключающих влияний между компонентами «включения» и «выключе-

Фиг. 36. Большие и маленькие пики, отводимые при помощи одного и того же микроэлектрода (Гранит, 1948).

I — назальный электрод катод; II — назальный электрод анод. Видны противоположные реакции маленьких и больших пики во время и после поляризации (эти же пики приведены на фиг. 34). Два четко видимых артефактных пики показывают начало и конец раздражения.

Таким образом, рецептивное поле сетчатки, к рассмотрению которого мы теперь переходим, содержит две антагонистические системы: одну, реагирующую на включение, и другую — на прекращение освещения. Какого бы мнения мы ни придерживались относительно происхождения реакции на включение и реакции на выключение, из сказанного выше ясно, что поскольку обе системы, вызывающие разряд импульсов, сходятся к одной и той же ганглиозной клетке, они не могут активировать ее одновременно, одна система тормозит другую. Следовательно, место, где эти системы сходятся, лежит где-то в «коммутаторе» сетчатки перед ганглиозными клетками. Когда возбуждены пути эффекта включения, пути эффекта выключения этой ганглиозной клетки заторможены, и, наоборот, при возбуждении путей эффекта выключения пути эффекта включения блокированы в месте схождения.

Как говорилось выше, реакция на выключение тормозится действием света. Можно, конечно, рассматривать это торможение
как одну из сторон только что описанного антагонизма между компонентами включения и выключения. Однако я бы не рискнул подписаться под подобным утверждением. Чрезвычайно существенная особенность чистых элементов с эффектом выключения состоит в том, что они, не давая импульсов, «накапливают» возбуждение во время освещения (см. Гарталин, 1938а, 1940б, в), освобождая его затем в виде сильного разряда в момент выключения света. Одно время (Гранит, 1933, 1947, 1950б, 1952б) я придерживался взгляда, что эффект выключения является следствием освобождения от торможения, вызываемого изменением потенциала в положительную сторону, который после возвращения к нулевому уровню дает колебание в отрицательную сторону и приводит к возбуждению при выключении. Я нашел, что эта точка зрения подкрепляется данными Парри (1947); см. гл. I, раздел 6. По моему мнению, вся сумма данных (см., например, Гранит, 1952б) подтверждает представление о первичном механизме возникновения эффекта выключения так же, как о первичном механизме возбуждения для эффекта включения. Однако, поскольку сами первичные механизмы антагонистичны друг другу, вся организация потеряла бы смысл, если бы в ганглиозных клетках эффекты включения и выключения смешались друг с другом. Синаптический аппарат «коммутатор» сетчатки должен быть устроен таким образом, чтобы сохранять разграничение между обоими эффектами; это осуществляется при помощи механизма синаптического антагонизма, приводящего к торможению. В гл. V будет показано, что в сетчатке действует сложный механизм электрической «обратной связи». Это дает основание предполагать связь рецепторов с синаптическими слоями. Пройдет определенное время, прежде чем данные явления будут полностью поняты.

Исследование Каффлера (1952, 1953), как мне кажется, показывает, что взаимное исключение между эффектами включения и выключения в пределах рецептивного поля ганглиозной клетки имеет очень тонкую организацию (см. ниже). Поэтому взаимное исключение легче понять с точки зрения синаптического механизма, подобного тому, который обусловливает реципрокные рефлекторные явления в спинном мозге. Такова же, по-видимому, и точка зрения Каффлера (1952). Учитывая чрезвычайную сложность вопроса о торможении в сетчатке, я тем не менее думаю, что наиболее простым объяснением всех имеющихся фактов было бы следующее предположение: первичные механизмы эффектов включения и выключения создаются существующей организацией сетчатки, обеспечивающей реципрокную иннервацию вторичных нейронов.

Рецептивные поля, как показали Эдриан и Меттюс (1927а, б; 1928), на глазе морского угря имели диаметр около 1 м. Эти данные основаны на результатах опытов с отведением импульсов от целого нерва. Применяя маленькое световое пятно (диаметром
0,55 мм), Гартлайн (1940а, с) исследовал на сетчатке лягушки рецептивное поле, от ганглиозной клетки которого можно было отводить одиночные пики, и получил почти такую же величину для размеров этого поля. Карта, составленная Гартлайном, представлена на фиг. 37.
Рецептивное поле очень чувствительно в центре и менее чувствительно к краям. Кривая, изображенная на фиг. 38, подтверждает результаты исследований Гартлайна. Она получена Томсоном на кролике при помощи регистрации пики (см. фиг. 38), изолированных микроэлектродом, введенным непосредственно в зрительный нерв. Барлоу (1953а, б) при помощи микроэлектродной методики, используемой, как и в на-

Фиг. 37. Карта рецептивного поля одиночного зрительного нервного волокна лягушки (Гартлайн, 1940с).
Каждая линия включает область сетчатки, в пределах которой тестовое световое пятно (относительно размеров которого приведены) с интенсивностью, логарифм которой указан цифрами, вызывает реакцию в волокне. На каждой линии указанная интенсивность является пороговой. Серия кривых образует контурную карту распределения чувствительности к свету в отношении лишь данного волокна.

Фиг. 38. Рецептивное поле ганглиозной клетки, определенное по пороговой энергии для света с длиной волны 530 мк (Томсон, 1953).
Отметка времени 10 сек.

Р. Гранит
шей лаборатории, для отведения импульсов от внутренней поверхности вскрытого глазного яблока (лягушки), сделал важное наблюдение, что почти круглое рецептивное поле элемента с эффектом включения—выключения окружено кольцом, раздражение которого дает тормозной эффект. При освещении только этого кольца разряд импульсов, возникающий в ответ на освещение центра рецептивного поля, тормозится, хотя освещение кольца само по себе не дает импульсов. Следовательно, кольцо, по-видимому, находится за пределами зоны, соответствующей данному одиночному волокну. Если принять, что рецептивное поле определяется всей суммой конвергирующих рецепторов и биполяров, то это будет означать, что торможение со стороны окружающих участков может передаваться при помощи вставочных нейронов, служащих для горизонтального распространения возбуждения (амакриновые клетки, как первоначально предполагали Грэхэм и Гранит, 1931). Во всяком случае возникновение торможения типа, обнаруженного Барлоу, очень трудно понять, если не предположить, что оно осуществляется при помощи нервной сети, вероятно, являясь основой одновременного контраста. Такой же точки зрения придерживался и Гартлок (1940а), основываясь на том, что в пределах рецептивного поля наблюдается суммация торможения, так же как и суммация возбуждения. В связи с этим следует напомнить о данных Шеррингтона, согласно которым в спинном мозге рефлекторное торможение обладает теми же особенностями, что и возбуждение, но с обратным знаком.

Опыты Барлоу поднимают вопрос об определении понятия «рецептивное поле». Поскольку нет доказательств обратного, можно предположить, что на разряды импульсов в элементе могут влиять процессы, происходящие очень далеко от него; сейчас, возможно, самое подходящее время подчеркнуть различие между элементом и рецептивным полем — понятиями, которые иначе могли бы стать неразличимыми. Так, например, Галлего (1953) недавно нашел в сетчатке кошки очень специфичный широко распространяющийся сетчатый слой, который мог бы служить для связи обширных участков, дающих благодаря этой связи диффузные разряды импульсов в темноте. Каффлер (1952) на том же самом животном действительно нашел рецептивные поля диаметром до 4 мм в темноте, однако он не признавал возможного действия рассеянного света, которое, как известно, довольно значительно. Каффлер всегда давал некоторое фоновое освещение; он получил величину того же порядка, что и другие авторы на других животных. Однако, если рассеянное полностью исключено, как при методике Вирта и Цеттерстрёма (1954), изучавших электроретинограмму, которую регистрировали при действии света, проходящего через зачерненные конусы из персепекса (органическое стекло), прикладываемые непосредственно к сетчатке (см. гл. V, раздел 2), то для получения всех волн нормальной
электроретинограммы, характерной для интенсивного раздра-
ження, необходимо световое пятно диаметром 4—5 мм. Следова-
tельно, вопрос о том, что подразумевать под понятием «рецептив-
ное поле», действительно является экспериментальной, а не
словесной проблемой. Я вернусь к нему ниже в связи с
вопросом о влиянии на рецептивное поле состояния адаптации.

Гартлайн (личное сообщение) обнаружил в глазе лягушки
большие и маленькие рецептивные поля, а также показал, что
размеры поля увеличиваются вдвое при применении интенсив-
ности раздражения в 100—1000 раз больше пороговой. Для глаза
такая интенсивность является еще умеренной. В пределах рецен-
tивного поля, как уже говорилось, происходит суммация воз-
буждения в элементах с эффектом включения и суммация тормо-
жения в элементах с эффектом выключения (Гартлайн, 1940а).

Интересная особенность недавно опубликованных исследо-
ваний Каффлера (1952, 1953) с рецептивными полями глаза
кошки состоит в том, что глаз оставался интактным, посколь-
ку электрод вводили через не-
большое отверстие в склере. Используя два маленьких све-
tовых пятна, Каффлеру удалось показать упоминавшийся выше
антагонизм между компонен-
tами включения и выключения, который я уже наблюдал ранее,
используя простой прием «сталь-
кания» эффекта включения и
эффекта выключения при по-
мощи укорочения периода осве-
щения (Гранит, 1951) или при
мельканиях (Эпрот, 1952). Наи-
более важные данные Каффлера
касаются тонкой организации
рецептивных полей. Так, из схе-
матического изображения, пред-
ставленного на фиг. 39, видно,
что центр поля дает только
эффект включения, в промежуточной зоне наблюдается эффект
включения—выключения, а в окружающих участках возникает
чистый эффект выключения. Есть другие поля, в которых соот-
ношение обратное: центр дает импульсы в ответ на выключение,
а периферия — в ответ на включение. Поскольку центр, в соот-
ветствии со всеми предшествующими работами, является наиболее
чувствительной частью поля, его особенности будут усиливаться
при соответствующем подборе силы раздражения и фонового осве-
ществия. Все эти факторы, включая площадь и место раздражения, исследовались в отдельности; было показано, что они могут менять тип разряда. Опыты Каффлера значительно углубили наше понимание факта, почему соотношение между эффектами включения и выключения в глазе кошки так изменчиво. Очень вероятно, что антагонизм между палочками и колбочками в глазе с большим числом палочек усложняет эти результаты.

Чтобы проиллюстрировать антагонизм между компонентами включения и выключения в пределах одноименного рецептивного поля, я воспроизвожу на фиг. 40 кривые из работы Каффлера. Одно из световых пятен (А) диаметром 0,2 мм располагали в центре рецептивного поля вблизи от кончика отводящего электрода; в ответ на включение света оно давало разряд импульсов с высокой частотой. Другое пято (Б) диаметром 0,4 мм помещали на 0,6 мм в сторону в той части поля, которая давала лишь эффект выключения. В ряду I, когда световое пято A сильнее, эффект светового пята B при одновременном действии со световым пято A подавляется. В ряду II световое пято A ослаблено,
а световое пятно B увеличено по силе. Когда они даются одновременно, эффект пятна A подавляется. В ряду III оба световых пятна, как A, так и B, сильные, и при одновременной подаче обоих раздражений их эффекты ослабляются. Исследования Энрот (1952), посвященные изучению реакции одиничных элементов на мелькания, дали сходные результаты.

Этот антагонизм в системе эффектов включения—выключение в сетчатке представляется мне особенно важным по другой причине, а именно потому, что он подтверждается на широком диапазоне явлений. Во-первых, эффект включения возбуждается действием света и прекращается в темноте, тогда как эффект выключения тормозится при действии света и возбуждается темнотой (см. фиг. 17). Во-вторых, оба эффекта, по-видимому, тесно связаны с противоположными по отношению друг к другу медленными потенциалами в сетчатке. Наконец, они взаимно подавляют друг друга при столкновении в ганглиозной клетке. Можно также сказать, что все эти данные заставляют признать, хотя и с запозданием, что представление Геринга, согласно которому в сетчатке существуют два основных процесса противоположного характера, было в основном правильным, хотя Геринг не мог предвидеть, в каком направлении подтвердится правильность его идеи. Представления Геринга основывались на явлении контраста, для которого описанный антагонизм, несомненно, чрезвычайно важен, хотя наиболее трудная задача состоит в том, чтобы показать, каким образом этот антагонизм осуществляется.

В отношении многих зрительных явлений световая адаптация и фоновое освещение имеют одинаковый эффект (см. например, работу Литто и Теисли по восприятию мельканий, 1929; а также работу Крейка и Вернона, 1941, показавших, что область суммации при световой адаптации сужается). Поэтому особый интерес приобретает обнаруженное Каффлером (1952) сужение рецептивных полей при увеличении фонового освещения. Такой эффект отмечался на полях всех типов. Наименьшие рецептивные поля, исследовавшиеся Каффлером при помощи светового пятна диаметром 0,1—0,2 мм, имели диаметр не более 0,5 мм и все-таки реагировали и на включение и на выключение. Это показывает, что высокая критическая частота мельканий у светлоадаптированных животных при сильном раздражении (Додт, 1951а; Додт и Энрот, 1953; Додт и Вирт, 1953) и последующей световой адаптации определяется реакцией элементов с малыми рецептивными полями. Поскольку в глазе голубя в этих условиях критическая частота достигает 140 вспышек в 1 сек. (Додт и Вирт, 1953), его колбочковая сетчатка, вероятно, характеризуется особенно маленькими рецептивными полями. Это и предполагали Додт и Вирт, основываясь на том, что у голубя число волокон зрительного нерва очень велико, почти в 10 раз больше, чем у кошки (Брэш и Эрн, 1942).
Каффлер (личное сообщение) в совместной работе с Барлоу недавно обнаружил, что при пороговых интенсивностях света (когда фоновая активность велика) рецептивные поля темно-адаптированного глаза кошки более или менее однородны, т. е. со всей своей поверхности дают реакцию, характерную для его центра при световой адаптации. Одновременно во всем поле происходит пространственная суммация, тогда как на свету она наблюдается лишь в небольшой области в центре или на периферии поля. Все это еще раз указывает на физиологическое значение упомянутого выше широко распространяющегося сетчатого слоя Галлего.

6. Ограничения возможности исследований при помощи микроэлектродного отведения

Остается обсудить вопрос, с какими ограничениями с точки зрения самой методики связана интерпретация всех этих экспериментов с одиночными волокнами или одиночными ганглиозными клетками сетчатки. Экспериментатор, желая провести длительное исследование, стремится получить большие пики, отводимые от больших ганглиозных клеток (Раштон, 1949, 1953). У кошки эти клетки, по-видимому, имеют большие рецептивные поля (Кахал, 1933; Поляк, 1941). В моей ранней работе по цветовосприятию я не всегда стремился получить большие пики, а часто измерял порог возникновения импульсов, наиболее чувствительных к данной узкой области спектра, не заботясь особенно об изоляции реакции одиночного элемента. Некоторые из этих пиоков отводились, по-видимому, скорее от нервных волокон, чем от ганглиозных клеток, поскольку, как было тогда выяснено (Гранит, 1941a), при использовании микроосвещения (Гранит и Светихин, 1939) между местом отведения и освещаемым участком часто было значительное расстояние. Доннер (1953) в недавней работе по цветовосприятию у голубя также судил о реакции по изолированным маленьким пикиам. Дженеранд (1948a) исследовал импульсы более подробно и нашел в глазе кошки два типа пиоков, которые позднее были очень четко разграничены Каффлером (1952) также на глазе кошки и Барлоу (1953a, b) на глазе лягушки. Оказалось, что одни пики отводятся от нервных волокон, другие — от ганглиозных клеток. Эта разница не имела бы существенного значения для анализа с точки зрения частоты импульсов, если бы обычно не добивались больших пиоков для того, чтобы было возможно проводить длительный опыт.

Рецептивные поля систематически не изучались при помощи регистрации маленьких пиоков, хотя известно, что эти пики также возникают в ответ на включение и выключение (Бом и Дженеранд, 1950, на глазе кошки; Доннер, 1953, на глазе голубя; Барлоу, 1953a, b, на глазе лягушки). Кроме того, некоторые поля, исследованные Каффлером, как мы уже видели, были очень малы и все
же давали реакцию и на включение и на выключение. Другой ряд данных показывает, что разницу между большими и маленькими пиками не нужно преувеличивать; как показали Додт и Энрот (1953), при достаточно высокой интенсивности раздражения большие пиксы в глазе кошки могут следовать за мельканиями с частотой, равной наивысшей критической частоте, известной для человеческого глаза в этих условиях (70—80 вспышек в 1 сек.). Палочковый глаз морской свинки за такой большой частотой мельканий следовать не может (Додт и Вирт, 1953). Таким образом, большие пиксы способны дать очень хорошее различение вспышек при мельканиях. К вопросу о мельканиях мы еще вернемся в связи с общей проблемой различения. Предположение же о том, что маленькие пиксы не возникают при выключении, не только противоречит экспериментальным данным, но и весьма мало вероятно, если учесть, что реакция на выключение является единственным феноменом в сетчатке, способным обеспечить периферический механизм последовательного контраста, достигающего своего высшего развития в цветовом зрении.

Хотя чрезвычайно желательно провести большие исследований, проведенных с отведением маленьких пикков, я не могу разделить предположения Раштона (1953), что маленькие пиксы по характеру реакции могут сильно отличаться от больших. Даже в fovea приматов пути с отношением 1:1, идущие через карликовые биполяры, имеют другие связи, которые делают их потенциально подверженными влияниям соседних путей. Они могут действовать изолированно друг от друга в одной ситуации и совместно с соседними рецепторами — в другой. Животные, не имеющие fovea, видят настолько хорошо, что возникает вопрос, как это возможно. Мало вероятно также, что закономерности, открытые в исследованиях с относительно большими пикками, почему-либо потеряли бы вдруг силу на той высокой ступени филогенетического развития (приматы среди млекопитающих, птицы), когда появляется fovea. Эти принципы, вкратце, заключаются в следующем: 1) существование двух антагонистических систем — системы с эффектом включения и системы с эффектом выключения; 2) организация, сходная с организацией чувствительности кожи, и состоящая из перекрывающих друг друга рецептивных полей самых различных размеров; 3) тонкая организация этих полей, служащая для усиления свойств центра поля (эффекта включения или эффекта выключения) за счет периферии; 4) механизм расширения и сужения рецептивного поля при изменении состояния адаптации.

При отсутствии исследований на fovea мы в настоящее время можем довольствоваться тем, что сетчатка представляет собой хороший орган различения даже у животных, не имеющих fovea. Если мы не можем много понять относительно ее свойств, уже известных сейчас, то, вероятно, мы немного достигнем и тогда, когда станет доступным фовеальное отведение (см. гл. VIII).