Глава III

СПОНТАННАЯ АКТИВНОСТЬ В ЧУВСТВИТЕЛЬНЫХ ОРГАНАХ И ЕЕ ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ.
ПРИНЦИП ЭФФЕРЕНТНОЙ РЕГУЛЯЦИИ

1. Введение. Периферический механизм

Современные представления о спонтанной активности в органах чувств полностью обусловлены применением электроники в исследованиях их функций, которая позволяла регистрировать импульсы. Это не означает, что у данного вопроса не было предыстории в психофизических исследованиях. Имеем ли мы спонтанные ощущения? Конечно, большинство чувствительных образований, как принято считать, в состоянии покоя не дает ощущений, однако глаз и прежде рассматривали как исключение, поскольку даже в темноте и при закрытых веках сохраняется какое-то ощущение. Для Гельмгольца (1867) это был собственный свет (Eigenlicht), образуемый внутренним возбуждением, а для Геринга (1925) — собственное серое (Eigenbraun). Эти великие противники расходились также и в отношении ощущения «черного». Приняв теорию Юнга, Гельмгольц следовал представлению, что белое есть сумма всех цветов, а черное — отсутствие ощущения, тогда как для Геринга черный цвет по своему восприятию был таким же положительным раздражителем, как бельй, и ощущение его создавалось только по контрасту с бельм. По теории Геринга ощущения черного и белого являются двумя противоположными и антагонистическими процессами, а именно, ассимиляцией и диссимиляцией; собственное же серое, точно так же, как восприятие любого другого серого, является некоторым промежуточным состоянием.

Если расчеты Бреша и Эри (1942), согласно которым 38% всего сенсорного притока у человека осуществляется через миллион волокон зрительного нерва, правильно, то не потребуется большой спонтанной активности этих волокон, чтобы вызывать ощущение серого. Мы являемся в высшей степени «зрительными» животными!

С проникновением методов электроники в изучение рецепторов была обнаружена спонтанная активность рецепторов. Прежде всего ее увидели на мышечных и кожных препаратах Эдриан и сотрудники (например, Эдриан и Поттерман, 1926а), однако они
предполагали, что спонтанная активность обусловлена возможными повреждениями или внутренним напряжением этих препаратов. В дальнейшем Эдриан и П. Меттьюс (1927а, b; 1928) весьма отчетливо обнаружили спонтанные разряды в зрительном нерве угря, а затем Эдриан (1932а, 1937) — в зрительном ганглии жука-плавунца (*Dytiscus marginalis*). Меттьюс (1931а) подтвердил наблюдения Эдриана и Цоттерmana, что рецепторы мышц лягушки иногда могут давать разряды импульсов в отсутствие какого-либо растяжения извне, но он считал, что это обусловлено слабой деформацией, вызываемой некоторым внутренним напряжением. Использование препаратов млекопитающих способствовало устновлению реальности спонтанной активности, поскольку частота разряда импульсов в покое у млекопитающих, как правило, выше, чем у холоднокровных. В дальнейшем, однако, мы увидим, что у всех типов животных существуют чувствительные образование, дающие разряды импульсов спонтанно, и эта форма активности, по-видимому, является частью их нормальной деятельности.

Так постепенно созревала мысль о спонтанной активности как о составной части работы чувствительных образований. Я сам убедился в этом, изучая такие высокоактивные чувствительные образования, как мышечное веретено млекопитающих и сетчатку, в каждом из которых наличие спонтанных разрядов импульсов имеет большое значение. По-видимому, вследствие того, что эта тема лишь постепенно завоевывала наше внимание, спонтанная активность, насколько мне известно, не получала заслуженного ею признания; так, до сих пор не было сделано обзора, в котором были бы приведены все данные относительно этого явления. Я постараюсь, хотя и с запозданием, исправить это упущение.

Я уже упоминал опыты Катца, в которых он исследовал электрическую активность афферентных окончаний в веретенах мышцы лягушки (см. фиг. 5). Когда напряжение веретена было очень невелико, наблюдался беспорядочный разряд импульсов, но совершенно ясно, что значительное число этих импульсов никогда не достигало аксона, оставаясь в виде препотенциалов, неспособных развиться до распространяющегося импульса. Эти абортивные импульсы в данном окончании существовали в дискретных, "квантовых" величинах и не имели постепенных градаций. Следовательно, они были, вероятно, нами импульсами, но ограничивались тонкими концевыми разветвлениями волокна и не были способны распространяться в основном стволе вследствие низких проводящих свойств в области разветвления данного волокна. Только в тех случаях, когда несколько таких импульсов поступали в это место одновременно, они могли создавать потенциал, необходимый для возникновения распространяющегося импульса в общем (после "слияния") волокне. Что касается причины возникновения беспорядочного разряда импульсов при
очень низком напряжении мышцы, то Катц указывал, что имеются значительные флюктуации в состоянии возбуждения рецептора растяжения, которые, возможно, зависят от молекулярных возмущений в механическом веществе рецептора или от ионных шумов в терминальной мембране нервных окончаний. Экспериментальное обоснование этой точки зрения дали Беллер, Никольс и Штрём (1953), обнаружившие, что средняя величина стандартного отклонения от регулярной частоты импульсов в препаратах, сделанных по Катцу, должна быть около 3,0—3,5 имп/сек. Это, по их расчетам, должно соответствовать колебаниям мембранного потенциала порядка ±0,7 мв в величинах стандартного отклонения, что вполне может наблюдаться в нервных окончаниях с диаметром менее 0,1 μ (Фет и Катц, 1952a). Температурные возмущения могут, следовательно, быть одним из постоянных источников этих «биологических шумов».

Фет и Катц (1951, 1952a), используя внутриклеточные микроэлектроды, обнаружили беспорядочную серию миниаторных колебаний потенциала также и в моторной концевой пластинке, причем амплитуда их составляла около 0,01 нормального потенциала концевой пластинки. Допуская возможность неизвестных причин в установлении этой спонтанной активности (ср. Беллер и др., 1953), Фет и Катц склонны приписывать это явление температурным возмущениям ионов, находящихся в клеточных мембранах. Брок, Кумбс и Эккес при помощи той же самой методики (1952) обнаружили аналогичные беспорядочные флюктуации потенциала на мембране моторной клетки переднего рога спинного мозга, но в этом случае они могли быть обусловлены, хотя бы частично, импульсами, достигающими отдельных синапсов. Анализ спонтанного разряда импульсов в органах боковой линии рыбы, проведенный Кацуки и другими (1950), также показал наличие беспорядочной активности на фоне периодических ее изменений.

Катц в результате своих наблюдений над мышечными ветвями отводит другую роль тонким разветвлениям чувствительного нерва на периферии, которые и уже рассматривал как возможный фактор, способствующий спонтанному возникновению импульсов во многих рецепторах. Специализированные образования, как например колбочки сетчатки, имеют дендриты, связанные с одночной биполярной клеткой. У палочек, каждая из которых заканчивается круглой пуговкой, эта связь осуществляется через конвергенцию отростков большого числа палочек на одну биполярную клетку. Следовательно, можно предполагать, что именно палочки обладают особенно высокой способностью генерировать спонтанные импульсы. По данным Катца, их возникновение в мышцах является функцией числа окончаний. В данном случае речь идет об окончаниях палочек на биполярной клетке, и это предположение подтверждается соответствующими экспериментами.
2. Роль спонтанной активности на примере сетчатки.
Реакция активации из ретикулярной системы

В сетчатке, состоящей из слоя рецепторов и двух последующих слоев нейронов, мы можем иметь и другой источник спонтанной активности. У большинства препаратов, на которых я проводил наблюдения, зрительный нерв перерезали (в случае децеребрированных кошек) или использовали изолированный глаз. В этих условиях разряд в зрительном нерве всегда имел чисто периферическое происхождение. Следовательно, с данной точки зрения несущественно, приписывается ли спонтанная активность неустойчивому состоянию в местах соединения рецепторов с биполярными клетками, в нейральных структурах или в обеих зонах.

Эдриан и Меттьюс (1928) впервые наблюдали спонтанное ритмическое возбуждение в сетчатке. Они регистрировали импульсы в целом зрительном нерве угря и нашли, что при освещении глаза спонтанная активность часто синхронизировалась в большие залпы. В сетчатке позвоночных в нормальных условиях регулярные групповые ритмы не наблюдаются, однако они возникают при действии стрихнина (Гранит, 1945а). Условия экспериментирования на вырезанном глазе не могут, вероятно, быть нормальными; на это указывал еще Эдриан (1937) в связи с работой на зрительном ганглии жука-плавунца. Однако, если микроэлектрод осторожно приложен к сетчатке, то при этом глаз повреждается очень мало. В нашей лаборатории (Гранит, 1947) для этой цели удаляют хрусталик и роговицу; кроме того, электрод можно вводить через маленькое отверстие в стенке глазного яблока, как это делает Краффлеер (1952, 1953). Результат получается один и тот же. Огромное число, возможно даже большинство, ганглиозных клеток дают спонтанные разряды, интенсивность которых несколько колеблется, но в общем проявляет тенденцию к значительному повышению при темновой адаптации (см. Гранит, 1947, стр. 95—96). Я это видел как у кошек и лягушек, а Краффлеер (1953) — у кошек. В глазе лягушки разряд импульсов бывает обычно значительным в темноте и небольшим при освещении или даже спустя некоторое время после прекращения освещения (когда собственно разряд на выключение заканчивается). Однако всегда обнаруживается спонтанная импульсация, найденная также в чисто колбочковом глазе (черепаха, змея). Спонтанная активность в волокнах слухового нерва и торможение ее звуком были описаны Галамбосом и Девисом (1944). В целом,

1 Термин «реакция пробуждения» (arousal reaction) широко применяется в зарубежной литературе для обозначения активирующего влияния, оказываемого ретикулярными структурами среднего и промежуточного мозга на кору больших полушарий. Однако здесь мы этот термин уместен, когда речь идет об активирующем влиянии на сетчатку и мышечные веретена. В связи с этим в переводе это явление названо «реакцией активации». — Прим. ред.
глаз и ухо с точки зрения импульсной активности и ее изменения обнаруживают ряд поразительных черт сходства. Недавно было сделано важное открытие (Хензел, 1952; Цоттерман, 1953), что к органам с выраженной спонтанной активностью относится и орган температурной чувствительности.

В сетчатке происходят и соответствующие медленные изменения потенциала, поскольку в этом органе, как и в других, каждому импульсу предшествует препотенциал (Каффлер, 1953; Бест, 1953b). Можно сказать, что этот маленький периферический «мозг», который придан зрительным рецепторам, ведет себя подобно остальному мозгу и генерирует минипатронные «мозговые волны». Недавно это подчеркнул также Барлоу (1953а, b).

Исследуя при помощи микроэлектродов спонтанную активность сетчатки, я сделал любопытное наблюдение (Гранит, 1941а): помимо клеток, проявляющих спонтанную активность, на которые можно влиять светом обычным образом, были найдены клетки, обладающие большой независимостью. При действии самого сильного из доступных мне источников света, создававшего освещенность в 2400 лк, в некоторых случаях активность клеток не менялась. Нет оснований подозревать, что клетка механически раздражалась микроэлектродом. Когда микроэлектрод медленно подводили к нужному месту, постоянно наблюдал за его движением в микроскоп (который помещали над вырезанным колбочковым глазом черепахи, использованном в опыте, результаты которого приведены на фиг. 41), часто можно было слышать в громкоговорителе ритм разряда импульсов, который был сначала подобен слабому отдаленному шуму, а затем постепенно усиливался по мере приближения электрода к активной единице. Недавно Каффлер (1953) сообщил также об открытии в применяемом им препарате — невскрытом глазе кошки — резистентных к свету элементов, обладающих спонтанной активностью. Это тем не менее не означает, что такие элементы не испытывают влияния со стороны слоя рецепторов.

Гораздо чаще, однако, обнаруживается, что свет возбуждает или тормозит разряд импульсов в зависимости от силы раздражения и природы элемента, одновременно с общим эффектом значительного понижения уровня спонтанной импульсации, если сетчатка находится в состоянии световой адаптации. При световой адаптации, по-видимому, спонтанную активность проявляет меньшее число элементов, чем при темновой.

Спонтанная активность, столь интенсивная в сетчатке мlekопитающих, является, таким образом, фоном, на котором разыгрывается эффект раздражения. Это могло бы служить естественным объяснением «собственному серому» Геринга. Какие функции можно ей приписать на основании электрофизиологических исследований?

Что касается пиков, на которые свет влияет обычным образом, то представляется ясным, что флуктуация возбудимости, находя-
щая выражение в спонтанной активности, должна обеспечить возможность некоторого периодического чередования активности отдельных единиц. Это очевидно, когда дают прерывистое раздражение в достаточно высоком ритме и регистрируют импульсы одновременно от нескольких единиц. Происходит чередование в их деятельности, что видно на кривых, представленных на фиг. 41.

Ф и г. 41. Действие света на спонтанную активность сетчатки (Гранит, 1941, 1945).

I — темноадаптированная сетчатка черепахи (торможение); II — сетчатка крысы (торможение); III — сетчатка лягушки (прерывистое освещение); IV — сетчатка черепахи (отсутствие действия). Отведение при помощи микрэлектродов. Отрезки прямых над кривыми показывают периоды действия света. Отметка времени 0,02 сек.

Кроме того, повышение спонтанной импульсации в темноте может компенсировать падение воздухимости, которое является, вероятно, следствием прекращения поступления афферентных импульсов в зрительные центры. В случае отсутствия спонтанной ритмической импульсации темнота приводила бы к естественной деафферентации наиболее важных отделов головного мозга. Несколько лет назад, когда единственно известными зрительными путями были проходящие через латеральные коленчатые тела пути, направляющиеся в стриарные области коры, проблема поддержания состояния облегчения в коре не была столь перспективна, как сейчас.

В свете последних электроэнцефалографических работ по влиянию на кору центров, расположенных в стволе мозга, вся проблема уровня активности мозговых центров приобрела новый аспект. Правда, уже раньше были известны наблюдения Клес (1939) в лаборатории Бремера, показавшей, что сетчатка имеет большое значение для поддержания нормальной электроэнцефалограммы, однако в то время значение этого факта не было понято. Результаты Клес получили объяснение благодаря проведенной нами микроэлектродной регистрации спонтанной активности в сетчатке кошки.

Клес использовала так называемый препарат изолированного мозга (enéphale isolé) (Бремер, 1936b). После обнажения атлантоокципитальной мембраны у кошки под наркозом производили
поперечное рассечение продолговатого мозга. После этого наркоз прекращали и животное поддерживали на искусственном дыхании. В отличие от мозга животных, находящихся под наркозом, такой мозг активен, и наиболее характерным признаком активного состояния является непрерывный низковольтный высокочастотный разряд, регистрируемый на электриограмме стriaрной области, который прерывается крупными залпами, подобными тем, что наблюдаются при барбитуратовом наркозе, но несколько более быстрыми и часто не такими большими. Клес изучала эту электромиографию до и после удаления обоих глаз или же перерезки зрительных нервов без удаления глаз; в одном случае вместо этого она производила прижигание сосочка зрительного нерва. У большинства животных в результате этих операций в течение 10—15 сек. почти полностью прекратилась активность центров. Период отсутствия активности прерывался появлением разрядов с более высоким вольтажом, но меньшей частотой, чем раньше, т. е. с изменениями в направлении этой картины, которая наблюдается при сне. Электромиограммы от стriaрной области, зарегистрированные до и после двустороннего удаления глаз, приведены на фиг. 42. Я подтвердил результаты Клес на таком же препарате. Ингвар (1954) наблюдал те же явления на нескольких животных, у которых производили мгновенную перерезку обоих зрительных нервов позади глазных яблок. Однако пока еще нет решающего доказательства, которое должны дать хронические опыты.

Клес отметила, что описанные изменения электромиограммы никогда не наблюдаются при отсутствии раздражения светом, даже, если животное находится в темноте в течение неопределенно долгого времени. Она сделала вывод, что сетчатка и в отсутствие зрительных раздражений оказывает тоническое
влияние на уровень спонтанной активности мозга. Эффект отмечался главным образом в стриарной области, но некоторый отзвук этого влияния можно было уловить и в других зонах, например в слуховой области.

На основании электроэнцефалографических результатов, по-видимому, можно объяснить общее биологическое значение поразительной спонтанной активности, которую я в то же время обнаружил в темноадаптированной сетчатке мlekопитающего. Вполне возможно, что некоторые ганглиозные клетки сетчатки, как показано Каффлером и мною, поддерживают уровень возбуждимости в центрах, и поэтому их импульсация в известной степени не зависит от раздражения светом. В плане физиологии зрения их можно, по-видимому, рассматривать как единицы с очень высоким порогом, частота импульсации которых изменяется только при наличии очень сильного освещения. На мой взгляд, трудно согласиться с тем, что они совершенно неподвержены влиянию освещения. Однако, если спонтанная активность частично поддерживается нейтральными элементами, то эта система вполне может временно не зависеть от импульсов из рецепторов. Большую ценность представляли бы дальнейшие исследования, посвященные всем этим аспектам физиологии зрения.

Что же представляет собой это «тоническое влияние»? Каким образом чувствительные образования могут действовать в качестве «возвбудителей»? Может ли мы формулировать это представление с большей точностью? Для того чтобы выяснить весьма важное биологическое явление спонтанной активности, мы должны обратиться к современным представлениям о сне и бодрствовании.

Рансон и сотрудники (см., например, Рансон, 1939; Рансон и Мэгун, 1939) в обширных исследованиях с использованием стереотаксического прибора Хорсли—Кларка (опыты, проведенные в университете в Чикаго) пришли к заключению, что в основе сна лежит не генерализованное торможение, и сделали вывод, что всю проблему нужно перевернуть на 180°. Так, например, в расчет следует брать в первую очередь не состояние сна, а активность, бодрствование. С точки зрения Рансона, в гипоталамусе имеется «центр бодрствования», который обеспечивает это состояние; при его разрушении животное впадает в сон. Здесь мы не будем касаться других аспектов проблемы сна, за исключением того, что нужно учитывать наличие в таламической внутренней медиальной пластинке противоположных по действию систем, т. е. центров, вызывающих сон (см., например, Гесс 1944а, b; Хантер и Джащер, 1949), включая и его электроэнцефалографические признаки (Акерт, Келл и Гесс, 1952). Бремер (1935, 1936а), создавая свой второй препарат изолированного мозга, препарат с высокой перерезкой ствола (cervveau isolé), рассуждал подобным же образом, считая, что электроэнцефалографические признаки сонного состояния, которые он наблюдал у своих животных, обусловлены перерезкой специфических сенсорных путей, про-
ходящих через лемниск и таламические области и активирующих сензорные проекционные зоны в переднем мозге. Такой взгляд в то время был широко распространен. В этих опытах Бремер, пересекая средний мозг, применял более высокую перезерку, чем Клес. Вместо препарата активного мозга, который получается при перезерке под продольговатым мозгом, он имел препарат мозга, обнаруживающий все электроэнцефалографические признаки сна или барбитуратного наркоза. Зрительные и обонятельные пути сохранялись, но если посредством разрушения основания промежуточного мозга прерывались и они, то инактивация становилась еще более глубокой (Бремер, 1938; Линдсли, Боден и Мэгун, 1949).

Работа Мэгун и его сотрудников Нимера и Райнеса, которая будет обсуждена в связи с вопросом о возбуждении мышечных веретен (см. гл. VII), привела к разработке концепции о находящихся в мозговом стволе и в продольговатом мозге возбуждающих и тормозящих областях генерализованного действия, служащих для установления соответственно гиперактивности и гипопрефлексии, а также снижения тонуса на периферии (без большого различий в состоянии отдельных мышечных групп). Дополнив свои экспериментальные методы электроэнцефалографией, Моруши и Мэгун (1949) и Моруши (1949) выяснили, что восходящая система в мозговом стволе состоит, по-видимому, из нейронов ретикулярной системы, идущих к базальной части промежуточного мозга и далее к коре, где эта система вызывает десинхронизацию высоковольтных медленных волн и создает характерную картину низковольтной высокочастотной активности, т. е. явление, названное реакцией пробуждения (см., например, Бремер, 1953; Мэгун, 1950, 1952). На фиг. 43, взятой из работы Бремера, показаны изменения в электроэнцефалограмме, наступающие во время пробуждения у человека. Мэгун и сотрудники нашли, что повреждение основания среднего и промежуточного мозга, которое устраняет электроэнцефалографическую реакцию активации, не затрагивает ядра специфического сенсорного пути. Поэтому эти ядра вряд ли можно считать ответственными за поддержание состояния бодрствования, определяемого по электроэнцефалографическим признакам. Бремер (1953) полностью согласился с этим выводом и, таким образом, присоединился к взгляду о том, что реакция активации осуществляется скорее через ретикулярную активирующую систему, а не через нейроны специфической системы, как он полагал вначале.

Ряд других направлений исследования электроэнцефалографическим методом, проведенных практически в тот же период, привел к созданию и уточнению представления о центрах бодрствования в ретикулярной системе среднего и промежуточного мозга. Так, Моррисон и сотрудники (Демпси и Моррисон, 1942; Моррисон и Демпси, 1942) положили начало весьма плодотворному направлению экспериментов, показав, что раздражение таламуса
в медленном ритме вызывает в обширных зонах обоих полушарий постепенно увеличивающиеся волны, имеющие конфигурацию ветвей, наблюдаемых при барбитуратном наркозе. Однако частые ритмы раздражения подавляли характерные для барбитуратного наркоза вспышки активности (Демпси и Морисон, 1943; Моррисон, Финли и Лотрон, 1943). Эти наблюдения были объяснены Мэффи и Гельверном (1945), которые обнаружили, что раздражение гипоталамуса, подавляющее такие вспышки, угнетает также синхронизированные пики, возникающие при действии

\[\text{Ф и г. 43. Изменение электроэнцефалограммы при пробуждении здорового взрослого мужчины (Бремер, 1953).} \]

Использованы монополярные отведения от лобной (I), теменной (II), затылочной (III), височной (IV) областей левого полушария. В начале видны медленные нерегулярные волны, характерные для неглубокого сна. Стрелка указывает момент, когда испытуемый был разбужен окликом. Следует отметить ряд медленных реактивных волн, синхронных во всех четырех отведениях, группу α-волн и, наконец, быстрые небольшие колебания, характерные для состояния бодрствования.

стрихнина, и вызывает высокочастотную низковольтную активность, характеризующую реакцию активизации. Джаспер и сотрудники (см. сводку Джаспер, 1949; Хэнбери и Джаспер, 1953; указывали, что реакция активации получается при раздражении в частом ритме определенных областей таламуса и задней части гипоталамуса. Джаспер считает, что ретикулярная система таламуса, как он ее называет, представляет собой более высоко организованную область, оказывающую диффузное влияние на центры, но способную также к более локальным воздействиям на кору и к реакции того типа, который впервые был описан Морисоном и Демпси. В этом отношении данная система отличается от ретикулярной системы среднего мозга, десинхронизирующее действие которой регулирует состояние таламических нейронов (см., например, Джаспер, Аймон-Марсан и Стол, 1952). Джаспер согласен, однако, с Мэгумом относительно сильного десинхронизирующего действия ретикулярной системы среднего мозга. Проекции этой системы на ядра таламуса были исследованы Старлем, Тейлором и Мэгумом (1951а).

С современной точки зрения особенно важно, по-видимому, что система восходящих ретикулярных нейронов обладает «богат-
Глава III

стом афферентных связей, о котором раньше не подозревали" (Мэгун, 1952; ср. Дел, 1952). Регистрируя потенциалы, возникающие в ответ на раздражение, Старцль, Тейлор и Мэгун (1951b) обнаружили в ретикулярной системе реакции на соматические и слуховые раздражения, а Френч, Ван-Амеронген и Мэгун (1952) — реакции на зрительные раздражения. Одновременное отведение от коры и ретикулярных центров показывает, что реакция ретикулярной системы на афферентные импульсы сопровождается характерной реакцией активации в выше расположенных отделах мозга, как это получается при прямом электрическом

Ф и г. 44. Схематическое изображение связей ретикулярной активирующей системы ствола мозга кошки и коллатерали, идущие к ней от афферентных путей (Старцль, Тейлор и Мэгун, 1951b).

1 — кора; 2 — мозжечок; 3 — таламус; 4 — суб- и гипота-
лавус; 5 — средний мозг; 6 — варолиев мост; 7 — продолго-
ватый мозг; 8 — коллатерали афферентных волокон; 9 — вост-
ходящая ретикулярная активирующая система в стволе мозга.

раздражении соответствующей области ствола. Поскольку удаление мозжечка или коры не устраняет реакции ретикулярной системы на афферентное раздражение, был сделан вывод, что эффект, как таковой, не зависит от центробежных путей коры. Принимая во внимание вышеупомянутый факт, что одного разрушения специфических путей проведения сенсорных импульсов не достаточно для снижения активности коры до уровня сна (по электроэнцефалографическим показателям), все эти данные как будто подтверждают представление, согласно которому чувствительные образования действительно обладают и другим путем, проходящим через ретикулярную систему среднего и промежуточного мозга и имеющим особое значение в поддержании состояния бодрствования (фиг. 44).

Возвращаюсь теперь к вопросу о спонтанной активности в чувствительных образованиях. Наши рецепторы, по-видимому,
должны играть значительную роль в поддержании нас бодрыми и деятельными. Спонтанная активность выступает как нечто значительно более важное, чем просто беспорядочные шумы, возникающие в чувствительных образованиях. Она является частью функционального плана нервной системы организма, обеспечивающего его деятельность и реактивность. В настоящее время мы можем лучше понимать, каким образом чувствительные образования могут служить активаторами. Хорошим примером является обонятельная луковица, проявляющая при легком наркозе длительную высокочастотную активность, которая может быть полностью подавлена при внутреннем введении барбиту- ратов или других наркотиков (Эдриан, 1950). В таких случаях:

... «присущая активность может восстановиться спустя некоторое время по мере ослабления наркоза, но еще до того, как это произойдет, ее часто можно вызвать вновь при помощи кратковременного обонятельного раздражения. Внезапное восстановление активности является примером реакции, наблюдающейся во многих других скоплениях нервных клеток, характеризующихся неустойчивостью; лучше всего такую реакцию определяет данное ей название «реакция пробуждения»... Это явление можно рассматривать как нечто большее, чем развитие длительного последействия в структуре, которая, будучи выведена из состояния равновесия, склонна к колебаниям. При некоторых условиях в одних структурах колебания быстро затухают, а в других продолжаются неопределенно долго» (Эдриан, 1950, стр. 381—382).

Рассматривая спонтанную активность чувствительных образо- ваний в таком плане, нельзя забывать, что некоторые чувствительные образования имеют эфферентные волокна, которые могут «сдвинуть» частоту их постоянной импульсации до любого желаемого уровня. Я вернусь к этому вопросу ниже.

В своей деятельности в качестве «активаторов» чувствительные образование, возможно, дополняются другими структурами. В частности, я имею в виду мозжечок, в котором Брукхард, Моруши и Снайдер (1950), применив микроэлектронную методику, обнару- жили в отдельных клетках Пуркинье или зернистых клетках разряды импульсов с очень высокой частотой. Трудно усмотреть какой-либо иной смысл в спонтанных разрядах, имеющих среднюю частоту 70—80 имп/сек, в мозжечке, лишенному связей с большим мозгом. В мозжечок поступает большое число афферентных путей, в особенности из кожи и мышц, и он со своей стороны посылает волокна в ретикулярную систему (Снайдер, Мак-Каллох и Мэгун, 1949; Уайтсайд и Снайдер, 1953). Блестящие обзоры анатомии дал Бродал (1943, 1949). Недавно Янсен и Бродал подвели итоги обширного цикла работ норвежской школы. Все это не следуето бы толковать таким образом, будто мозжечок служит лишь этой цели. Действительно, одним из важнейших достижений последнего десятилетия являются наши возросшие
знания относительно существования высокоспецифических проекций на кору мозжечка и другие функциональные области мозга (Доу, 1939; Эдриан, 1943б; Фултон, 1949а; Снайдер, 1950; Моруцци; 1950; Вулси, 1950; Чамберс и Спранг, 1951, 1952; Спранг и Чамберс, 1953).

Предерживаться точки зрения, согласно которой чувствительные образования, и особенно сетчатка, активируют определенные системы и отдельные клетки посредством постоянной спонтанной активности, значит предполагать новую роль периферического торможения в чувствительных образованиях независимо от его причины. Если бы все волокна зрительного нерва в отсутствие раздражения бездействовали, то эффект торможения вокруг освещенных точек, создаваемых на сетчатке, был бы незначителен, поскольку он не вызывал бы изменений, передающихся в кору. Но если чувствительное окончание является в норме спонтанно активным, то о подавлении присущей ему активности кора будет информирована, и соответствующие изменения найдут отражение на воспринимающей поверхности стriaрной области коры, воспроизводящей периферическую воспринимающую поверхность (см. Фултон, 1949б). Границцы световых пятен на сетчатке будут в этом случае восприниматься как области, в которых возбудимость соответственным образом изменена. Создается также условие для количественной градации восприятия от «черного» до «белого», и интенсивное черное будет восприниматься только по контрасту с белым. Эти факты позволяют предполагать, что периферия таким своеобразным способом может сигнализировать в центр о полном прекращении импульсной активности. В центре может происходить дальнейшее преобразование этой сигнализации, однако трудно представить, чтобы этот процесс был чем-то другим, чем угнетение фоновой активности.

Исследуя разряд импульсов в зрительном нерве при отведении от одиночного элемента темноадаптированной сетчатки кошки, обычно можно видеть, что возбуждению предшествует торможение, особенно при большей силе раздражения (Гранит, 1944). Ускорение ритма спонтанного разряда, если он есть, происходит не сразу, а после начального торможения. Таким образом, по каким-то неизвестным нам причинам, прежде чем сигналы возбуждения получат возможность достигнуть мозга, происходит устранение спонтанной активности.

Мы все еще полностью не знаем, какое специфическое сенсорное значение имеет постоянная спонтанная активность сетчатки, кроме того, что она активирует вышеперечисленные нервные центры. Высвободившие предположения должны быть обратить внимание на ряд возможностей, которые в общих чертах сводятся к тому, что фоновый спонтанный разряд импульсов повышает значение периферического торможения. Дальнее мы увидим, что это обобщение находит подтверждение в данных, полученных на других
рецепторах. Общее преимущество такой организации аналогично тому, которое имеет гальванометр со стрелкой в середине шкалы перед гальванометром со стрелкой у ее конца.

Сюда относятся также некоторые наблюдения Чанга (1952a, b). Он регистрировал на кошках реакцию на свет в латеральном коленчатом теле, где находится первый синапс зрительного пути. Записи, приведенные на фиг. 45, показывают, что реакция на редкое повторное электрическое раздражение латерального коленчатого тела мала в темноте, но постепенно увеличивается при освещении глаза. Эффект развивается медленно (в течение 5 сек.), но выражен очень отчетливо. Свет как бы сам усиливает свое действие. Этот эффект распространяется и на слуховую зону, что доказывает иным путем, чем в ранее упомянутой работе, глубокое влияние импульсации в зрительном нерве на общий уровень деятельности головного мозга. Чанг считает, что этот эффект вызывается импульсами, возникающими при возбуждении, и вполне возможно, что он прав. Если это так, то эффект должен наблюдаться и при прекращении освещения (разряд в ответ на выключение).

Ф и г. 45. Изменение реакции коры на раздражение латерального коленчатого тела при освещении сетчатки (Чанг, 1952а).

Регистрацию производили при помощи электрода, погруженного в кору на глубину около 1,5 мм. Стрелки показывают включение и выключение света. Отметка времени 1 сек.
3. Спонтанная активность некоторых механорецепторов

Высокочувствительные механорецепторы, подобные имеющимся в вестибулярном аппарате и в боковой линии рыб, действуют по принципу микрорычага и имеют вид волосков, находящихся в жидкой среде. Принцип, согласно которому движение жидкости в одном направлении вызывает разряд импульсов, а в другом — подавляет спонтанную активность, был установлен Левенштейном и Заанде (1936, 1940) в работе на полулучных каналах акуловых рыб. Значение полученных ими данных, возможно, будет лучше понять, если сначала рассмотреть орган боковой линии рыб, которому вестибулярный аппарат морфологически гомологичен. Этот орган представляет собой две трубы, симметрично расположенные по обеим сторонам тела, содержащие волоски, окруженные эндослифом. Кацуки, Мицури и Иоширо (1951) в относительно широком канале боковой линии японского морского угря обнаружили группы чувствительных цилиарных клеток, покрытых тонкими прозрачными колпачками.

Фиг. 46. Влияние перфузии гидростатической жидкости на активность рецепторов боковой линии у плотвы (Занд, 1937).
I — перфузия в направлении к голове; II — перфузия в направлении к хвосту. Перфузию проводили при давлении 10 см вод. ст. Отметка времени 1 сек. Подробности см. в тексте.

Хогленд в ряде работ (1933а, b; 1933—1934a, b) описал спонтанную активность в нерве, иннервирующем этот орган (ср. Кацуки и др., 1950). Хогленд и независимо от него Шривер (1935) нашли, что чувствительные клетки являются механорецепторами, но только Заанду (1937), разработавшему методику для перфузии гидростатической жидкости канала, удалось показать, что движение жидкости в одном направлении возбуждает определенные рецепторы, движение же в другом — тормозит. Это показано на фиг. 46. В действительности имеется два типа концевых образований, дающих противоположные реакции, как это видно из табл. 1.

Возможно, следовало бы также отметить, что орган боковой линии подчиняется закону Фехнера: частота импульсов пропорциональна логарифму скорости тока жидкости. Скорость тока, равная 16 мм/сек, являлась максимальным раздражителем для этих рецепторов, а порог был таким низким, что его не могли отчетливо установить. Даже самое тихое постукивание по столу
Таблица 1

Реакция двух типов концевых образований боковой линии рыб на направление движения жидкости в канале
(Занд, 1937)

<table>
<thead>
<tr>
<th>Направление движения жидкости</th>
<th>Тип 1</th>
<th>Тип 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>во время перфузии</td>
<td>после-действие</td>
</tr>
<tr>
<td>К голове</td>
<td>Сильная реакция</td>
<td>Период покоя</td>
</tr>
<tr>
<td>К хвосту</td>
<td>Торможение</td>
<td>Учащение ритма</td>
</tr>
</tbody>
</table>

или шаги по лаборатории вызывали реакцию, и пока указанные помехи не были устранены, они затрудняли работу и являлись источником ошибок. В связи с этим можно думать, что отчетливая спонтанная активность рецепторов боковой линии является артефактом или, кроме того, обусловлена движением волосков (Хогленд). Но Занд указывает, что при введении в канал суспензии частицек метилового синего он в течение более чем 1-часового наблюдения не мог увидеть в бинокуляр какого-либо движения. И все же, несмотря на неподвижность введенных частицек, в нерве, отходящем от канала, обнаруживалась сильная постоянная импульсация. Была исключена также возможность артефактов. В связи с этим Занд справедливо указывал: «Если считают, что активность цилиарных клеток является до некоторой степени более понятной, чем присущая им ритмичность чисто нервного периферического механизма, то это происходит только потому, что мы знакомы с подобными автономными периферическими эффекторами, тогда как представление о непрерывированной периферической нервной ритмике для нас ново» (стр. 490).

Отчетливые спонтанные ритмические разряды в сетчатке и многих других чувствительных образованиях, а также рассмотренные выше данные Катца, полученные на мышечном верене, могли бы послужить веским доводом против отрицания действительно спонтанного возникновения импульсов. Следовательно, нужно, по-видимому, проводить различие между истинным разрядом импульсов в покое и тем разрядом, который вызывается разражением (например, слабым растяжением мышечного веретена или механическим напряжением, воздействующим на рецепторы, расположенные вокруг стержня волоса). Для данной проблемы это различие не имеет большого значения, но в последнем разделе я покажу, на какой стадии обсуждения оно действительно необходимо.

Мне хотелось бы подчеркнуть, что наше дальнейшее движение вперед имеет более надежное основание, когда мы исходим из
Глава III

предположения о близком сходстве в принципе деятельности различных рецепторов, зависящем от сходных механизмов, чем когда мы строим гипотезы о большом числе различных специфических механизмов. В самом деле, реакции рецепторов делятся на относительно ограниченное число типов. Когда в органе боковой линии возбуждение сменяется торможением в ответ на движение жидкости в одном направлении, торможение сменяется возбуждением в ответ на движение жидкости в другом направлении (см. табл. 1), эти эффекты, вероятно, в конечном счете обусловлены обсуждавшимися выше деполяризацией и гиперполяризацией мембраны (гл. 1, раздел 4). Другой вопрос заключается в том, каким образом движения волоска вызывают деполяризацию и гиперполяризацию⁴. Наиболее правильно, возможно, предположить наличие двух родов цилиарных клеток, в которых волоски слегка согнуты или так укреплены, что движение жидкости в одном направлении увеличивает их напряжение, а в другом — снижает его. Вопрос этот не решен. Он возникает вновь и в других механорецепторах того же типа, например в ампулах полукружных каналов, для которых Левенштейн (1953) недавно показал, что возникновение импульсов, по-видимому, обусловлено деполяризацией.

Здесь следовало бы вспомнить о вибриссах кошки. Вокруг их оси расположены нервные окончания, которые устроены гораздо сложнее, чем у обычного волоса. Эти окончания окружены чувствительными образованиями, заключенными в сумки, которые могут обеспечивать механические условия, необходимые для их дирекциональной чувствительности, описанной Фитджеральдом (1940). Спонтанная импульсация повышается, когда вибрисс движется в одном направлении и угнетается при ее движении в обратном направлении. На вибриссы всегда действует сила тяжести, и, таким образом, чувствительные образования вокруг ее оси, по-видимому, всегда находятся под определенным напряжением.

Для решения вопроса о значении спонтанной активности данных, касающихся органа боковой линии, недостаточны, поскольку неизвестны рефлекторные влияния с этих рецепторов. Таким образом, только в качестве гипотезы их спонтанной ритмике можно приписать функцию активации того типа, которая показана в отношении сетчатки млекопитающих. Такое предположение было высказано Хогглендом. Однако для других гомологичных структур соответствующие рефлексы известны, и поэтому вполне возможно, что изменение спонтанной активности в сторону торможения или возбуждения в органах боковой линии также представляет собой важный механизм, определяющий возникново-

⁴ Предположение, что деполяризация и гиперполяризация существуют в этих органах и зависят от направления тока жидкости, было подтверждено Кацуки, Учицума и Тоцука (1954).
ведение различных реакций. Вероятно, эти органы не являются исключением из общего правила, согласно которому спонтанные импульсы, помимо активации более высоких центров, играют важную роль в тех случаях, когда периферические механизмы возбуждения включают и периферическое торможение.

Значение этого вывода становится еще более важным в связи с деятельностью рецепторов в полукружных каналах, которые сигнализируют о движении в пространстве, причем отклонение от боковой линии состоит в том, что жидкость заключена в трубку, приводится в движение ускорением и наносит случайный импульс, который, как показано на фиг. 47, покрыт мириарными клетками. Действительную способность колпачка совершать внутри канала колебательные движения наблюдал Штейнхаузен (1931, 1933) и Дольман (1935, 1941) в красивых опытах на рыбьих. Как хорошо известно каждому студенту-биологу, три полукружных канала в лабиринте уха расположены в трех взаимопрерывных плоскостях и, таким образом, способны регистрировать ускорение во всех направлениях (см., например, Кемис, 1930). Как было показано блестящими опытами Флурана (1830a, b), Эвальда (1887), Тейера (1889), Магнуса (1924) и других, они вызывают большое число компенсаторных рефлексов на глазные мышцы, мускулатуру туловища и конечностей.

Вестибулярные нервы были изучены несколькими исследователями (Росс, 1936; Левенштейн и Занда, 1940; Эдриан, 1943a; Джерна, 1949; Бенингауэс, Хенач и Вильмар, 1952), причем все они отметили отчетливые разряды импульсов в состоянии покоя. Описывая динамические реакции на ускорение, я использую данные Левенштейна и Занда, полученные на шиповатом скате (Raja clavata). У этого животного можно удалить кусочек хряща, содержавший лабиринт, и изучать его в изолированном виде, поворачивая в

ф и г. 47. Схематическое изображение гребешка ла-биринта (Кольмер, 1911).
1 — мириарные клетки, расположенные на поверхности гре- бешка; 2 — опорные клетки, расположенные между реест- чатыми; 3 — мириарные клетки, находящиеся ближе к основанию гребешка; 4 — крупные нервные волокна, образующие своими окончаниями связь с внутренней клеточной сетью; 5 — тонкие нервные волокна в латеральных частях гребешка, образующие свободные межклеточные окончания; 6 — колпачок. Видно, что волосковые органы чувствительных клеток прокладывают в каналы колпачка.
Таблица 2

Реакции с шести полукружных каналов на угловое смещение относительно трех главных осей

(Левенштейн и Занд, 1940)

<table>
<thead>
<tr>
<th>Полукружный канал</th>
<th>Поворот относительно продольной оси</th>
<th>Поворот относительно поперечной оси</th>
<th>Поворот относительно вертикальной оси</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>вправо</td>
<td>влево</td>
<td>вправо</td>
</tr>
<tr>
<td>Правый передний вертикальный</td>
<td>Возбуждение</td>
<td>Торможение</td>
<td>Возбуждение</td>
</tr>
<tr>
<td>Левый передний вертикальный</td>
<td>Торможение</td>
<td>Возбуждение</td>
<td>Возбуждение</td>
</tr>
<tr>
<td>Правый задний вертикальный</td>
<td>Возбуждение</td>
<td>Торможение</td>
<td>Возбуждение</td>
</tr>
<tr>
<td>Левый задний вертикальный</td>
<td>Торможение</td>
<td>Возбуждение</td>
<td>Возбуждение</td>
</tr>
<tr>
<td>Правый горизонтальный</td>
<td>Отсутствие реакции</td>
<td>Отсутствие реакции</td>
<td>Отсутствие реакции</td>
</tr>
<tr>
<td>Левый горизонтальный</td>
<td>Отсутствие реакции</td>
<td>Отсутствие реакции</td>
<td>Отсутствие реакции</td>
</tr>
</tbody>
</table>

любом направлении. Работа этих авторов является единственною в своем роде по завершённости, и ее результаты в основном соответствуют полученным на других животных, включая млекопитающих (Эдриан, Дженан). Левенштейн и Занд сделали важное наблюдение, о котором я уже упоминал, а именно, что для каждого канала имеются две противоположные реакции: поворот в одном направлении повышает спонтанную импульсацию, в противоположном — подавляет ее. Если учесть, что имеется шесть таких каналов (по три в каждом ухе), то становится очевидным, что спонтанная импульсация, ритм которой может ускориться или замедлиться, лежит в основе функции различения. В табл. 2 приведенны реакции с полукружных каналов, наблюдающиеся при поворотах относительно трех главных осей.

Табл. 2 заслуживает тщательного изучения. Способ, которым перемещения в пространстве разлагаются в ней на ряд комбинаций импульсов, составляет основу того рефлекторного механизма, который автоматически осуществляет компенсаторные движения мыши. Вряд ли можно найти более наглядный пример значения, которое имеет для различения общая конфигурация возбуждения. Факт, что вестибулярное различение, как считает большинство авторов, не воспринимается как впечатление, т. е. сознательно, не является в данном случае существенным, поскольку нижележащие центры, например глазных мышц, раздеваются в вестибулярных сигналах достаточно точно. Нет осно-
ваний рассматривать сознание как нечто большее, чем то, что создается на основе определенной конфигурации возбуждения.

Интересной деталью, по словам Левенштейна и Занд, является то, что:

«...четыре вертикальных канала функционально сгруппированы попарно, причем это группирование различно при трех типах поворота. Так, при повороте относительно продольной оси (наклон в сторону) их можно назвать латерально-синергическими, при повороте относительно поперечной оси (наклон вперед и назад) они поперечно-синергические и при повороте относительно вертикальной оси (поворот в горизонтальной плоскости) — диагонально-синергические. Наклон вправо, например, возбуждает правые передний и задний каналы (латеральный синергизм), наклон вперед возбуждает правый и левый передние каналы (поперечный синергизм), а поворот по часовой стрелке в горизонтальной плоскости возбуждает левый передний и правый задний каналы (диагональный синергизм)».

Левенштейн и Занд представили также схему корреляции этих реакций каналов с движениями глазных мыши, но сейчас мы не будем касаться этого вопроса. Моей целью было указать на важность различения спонтанной импульсации в рецепторах. В этом плане хорошим примером являются полукружные каналы, поскольку они связаны с четко ограниченной задачей ориентации в пространстве. Своими реакциями на ускорение они должны обеспечивать возможность различения движения в одном направлении от движения в другом, чтобы правильно рефлекторную ориентацию так, как они это делают. Подобно другим рецепторам, они обладают только частотным кодом для своей сигнализации, которая в данном случае обеспечена замечательным прибором ориентации в пространстве, а именно наполненными жидкостью трубочками, расположенными в трех плоскостях и заключающими колеблющийся то в одну, то в другую сторону колпачок. Повышение и понижение частоты спонтанного разряда импульсов создают определенную конфигурацию возбуждения. Одной из главных задач физиологии органов чувств является попытка представить периферические механизмы сенсорного различения на языке частотного кода. В этом направлении Левенштейн и Занд добились успеха.

Спонтанные разряды импульсов из вестибулярного аппарата служат также в качестве «возбудителей» специфических структур, таких, как клетки передних рогов, обеспечивающие эфирную часть тонических рефлексов или рефлексов позы. Уже давно Фултон, Лиддел и Риох (1930) показали, что разрушение вестибулярных ядер у животных в состоянии децеребрационной ригидности делает их атоничными. Этот опыт не так давно повторили и подтвердили Бах и Магун (1947). Однако лабиринты, по-видимому, не являются единственным источником тонической импульсации (Спринг и Чамберс, 1953). Мы вернемся к этому вопросу в гл. VII, когда будем рассматривать регуляцию тонуса.
4. Спонтанный разряд импульсов в некоторых хеморецепторах

Спонтанная активность хеморецепторов каротидного клубочка, открытая Ж. Геймансом и К. Геймансом (1927), является интересным случаем, поскольку для этих рецепторов, реагирующих на недостаток кислорода в крови, существует прекрасный рефлекторный показатель в виде эффекта на дыхание животного. Их импульсы были зарегистрированы Эйлером, Лильстреманом и Цоттерманом (1939), которые обнаружили их спонтанную активность также и при нормальном дыхании. Позже Бьорстедт (1946) провел систематические наблюдения в опытах, в которых посредством охлаждения афферентных нервных элементов устраивалась постоянная стимуляция дыхательного центра из каротидного синуса. Даже при нормальном дыхании охлаждение каротидных нервов снижает интенсивность дыхания, показывая этим, что рефлекторная регуляция, поддерживаемая при помощи спонтанной активности, важна для нормальной возбудимости дыхательного центра.

5. Общее значение спонтанной активности

Суммируя данные, полученные из различных источников, можно прийти к ряду выводов относительно спонтанной активности, наблюдаемой в разнообразных рецепторах. Когда впервые была обнаружена спонтанная активность, возникли естественные сомнения: условия, в которых находился препарат, могли быть ненормальными, и, по-видимому, невозможно было избежать некоторого раздражения. В конце концов, однако, существование спонтанной импульсации рецепторов было признано, хотя, по существу, это признание происходит именно сейчас. В нескольких случаях было показано, что спонтанная активность наиболее важна для поддержания общей возбудимости нервных центров и, кроме того, она играет важную роль при различении внешних воздействий, в частности для рецепторов, в которых существует механизм периферического торможения. Таким образом, это свойство обеспечивает деятельность «личного» измерительного прибора, который показывает изменение в движении в обоих направлениях. Мы имеем также данные, позволяющие считать, что спонтанная активность рецепторов делает их важными «активаторами» головного мозга.

В бытность свою студентом-медиком я слышал о знаменитом случае Штормпеля (1877), когда наблюдался интересный пример постепенной потери возможности использовать органы чувств. В конце концов остались только один глаз и одно ухо. Когда оба эти источника притока импульсов выключали, больной регулярно спустя 2—3 мин. засыпал. Много позже Бремер обнаружил, что у кошки электроэнцефалограмма при перерезке на уровне среднего мозга приобретает черты, характерные для состояний...
Спонтанная активность в чувствительных органах

ния сна. Он сделал заключение, что по специфическим афферентным путям приходят импульсы, необходимые для состояния бодрствования. Чанг на основании своих экспериментов (1952) пришел к тем же самым выводам для зрительных центров и, конечно, привлек внимание к случаю, описанному Штромпелем. Эти наблюдения получили новое освещение благодаря открытию неспецифической ретикулярной системы среднего мозга (Мэгун, 1952), которая получает коллатерали от различных афферентных путей, идущих в верхние отделы, и трансформирует этот сенсорный приток в импульсы, активирующие обширные области коры головного мозга. Весьма вероятно, что именно эти неспецифические пути, а не прямые сенсорные влияния, осуществляют ту активацию, о которой речь шла выше.

6. Эфферентная регуляция сенсорной сигнализации

Чувствительные образования в зависимости от их физиологического значения могут иметь практически постоянную или же изменяющуюся чувствительность. Кроме того, для большинства чувствительных образований существует какая-то регуляция их деятельности. Хорошо известными механизмами этого рода являются зрачковый рефлекс и механизмы, управляющие сокращением мышцы, натягивающие барабанную перепонку, и стремянной мышцы. Наиболее разработанной системой саморегуляции обладают мышцы конечностей. Существуют тормозные сухожильные рефлексы, которые предохраняют сухожилия от слишком большого напряжения. Другие образования — мышечные веретена млекопитающих, расположенные в особой «интрафузальной мышечной ткани», — сохранили высокую степень независимости и не следуют пассивно за изменениями длины обычных мышечных волокон. Частично они обязаны этим анатомическому устройству интрафузальных волокон, частично — особому роду эфирных элементов спинного мозга, регулирующих длину этих волокон. В последние годы мы достигли большого прогресса в понимании эфирной регуляции веретен и других чувствительных образований мышц. Сравнительно подробно эти вопросы будут рассмотрены в гл. VI и VII.

Здесь мы коснемся лишь общего принципа регуляции осуществляемой через эфирное нервные волокна. Если относительно медленно адаптирующиеся и, следовательно, спонтанно-активные рецепторы действительно регулируются нервными центрами головного мозга, то ясно, что спонтанная активность в целом организм не обусловлена только «биологическими шумами». Другими словами, спонтанный разряд импульсов в чувствительных образованиях не является вполне спонтанным: организм способен регулировать уровень постоянной импульсации в зависимости от своих потребностей. Как это происходит в отношении мышечных веретен, будет показано на многих при-
мерах в гл. VI и VII. Здесь достаточно указать, что разряд импульсов из веретена весьма эффективно регулируется ретикулярной активирующей системой среднего мозга (Гранит и Каада, 1952), которая получает значительную часть неспецифического сензорного притока. Спонтанный разряд импульсов из сетчатки регулируется, по-видимому, подобным образом той же самой системой (Гранит, 1953; см. также ниже).

Следовательно, имеются, по-видимому, все условия для существования длинных цепочек, по которым благодаря самовозвуждению происходит циркуляция импульсов, например мозговой ствол → мышечные веретена → мозговой ствол. Такая циркуляция импульсов может иметь большое значение, а в патологических случаях — может приобретать характер порочных кругов и способствовать поддержанию нервного напряжения. Я не буду детализировать далее эти представления. В них нет ничего такого, к чему нельзя было бы подойти экспериментально, и лет через десять мы будем знать о них гораздо больше. Но и в настоящий момент уместно, я думаю, привести некоторые конструктивные рассуждения, поскольку мы имеем дело с проблемами, которые нуждаются в теоретическом осмыслении с тем, чтобы они имели перспективы для своего развития.

В чем, например, состоит роль эфферентных волокон, идущих к глазу и к уху? Хелл (1893), а недавно Расмуссен (1946, 1950) описали подобные эфферентные волокна, идущие к уху. Ничего, однако, неизвестно по поводу их функции. Кахал (1894, 1933) и Догель (1895) обнаружили эфферентные волокна, идущие к сетчатке (ср. Эри, 1916). Поляк (1941), суммируя имеющиеся в литературе данные, указывал, что существование подобных волокон в зрительном нерве еще не показано достаточно убедительно при помощи методики дегенерации нервных волокон. Часть волокон могла быть возвратными коллатеральными аксонов того типа, который обнаружен в клетках передних рогов спинного мозга и, следовательно, связана с осуществлением тормозящей или возбуждающей обратной связи сетчатки нейронов. Вопрос о тормозной обратной связи клеток передних рогов будет обсуждаться в гл. VI.

С другой стороны, в отношении сетчатки мне недавно (1953) удалось показать влияния, исходящие из ретикулярной активирующей системы среднего мозга; некоторые из этих влияний трудно понять, если не признать существования эфферентных волокон, берущих начало в этой области мозга. Новые данные были получены при микроэлектродной регистрации импульсов из сетчатки куаризированной кошки, когда ретикулярную формуацию среднего мозга раздражали с частотой 50—200 раз в 1 сек. через игольчатые электроды, введенные в мозг при помощи стереотаксического прибора Хорсли—Кларка.

На фиг. 48 показаны контрольные реакции (1—4) на вспышку света в 2,7 лк. Концы пары раздражающих игольчатых электро-
дов находились непосредственно над собственно ретикулярной формацией. Тем не менее тетаническое раздражение в течение 11,3 сек. (фиг. 48, 5—15) повлекло за собой отчетливое повышение чувствительности к тестовой вспышке, что видно на записях

Ф и г. 48. Изменение реакции сетчатки на вспышку света в 2,7 лк при раздражении ретикулярной формации.

1—4 — контроль; 5—15 — во время раздражения поверхностной части ретикулярной формации (107 раз в 1 сек.) на претектальном уровне (отклонения вниз — артефакт ритмического раздражения); 16—25 — после раздражения. Интервал между записями 0,75 сек. Отметка времени 50 пер/сек. Препарат изолированного мозга кауризированной кошки.

17—24. Для усиления эффекта игольчатые электроды продви-гали немного вглубь ретикулярной системы среднего мозга. Были получены две кривые, приведенные на фиг. 49, каждая точка которых является средним из пяти записей продолжительностью 284 мсек при интервале между записями 750 мсек. Контрольной реакцией являлся разряд, возникающий в ответ на включение света в 2,7 лк. Вслед за тетаническим раздражением ретикулярных структур (отмечено пунктирной линией) наблюдалось очень большое облегчение контрольной реакции. В гл. VII
будут описаны такие же влияния на мышечные веретена. В данном случае, однако, речь идет о явлении, происходящем полностью в центральной нервной системе, к которой относятся ганглиозные слои сетчатки. И все же общие признаки этих двух явлений выглядят весьма сходными. В обоих случаях ретикулярную систему нужно раздражать в течение некоторого времени; она медленно реагирует и остается активной в течение значительного периода после прекращения раздражения. Упомянутая ранее

формула

Фиг. 49. Анализ опыта, аналогичного приведенному на фиг. 48, на том же животном.

○ при силе раздражения 10 в и частоте 49 стимулов в 1 сек (более сильное облучение); ○ при силе раздражении 5 в и частоте 107 стимулов в 1 сек. Пунктирной линией отмечен период раздражения ретикулярной формации. Объяснение см. в тексте.

реакция активации коры происходит аналогичным образом. Мы могли бы говорить о реакции активации сетчатки или мышечного веретена. Однако, если электроэнцефалографическую реакцию активации коры все еще следует рассматривать как недостаточно электрофизиологически понятную, то настоящий эффект, выражающийся в изменении чувствительности одиночной ганглиозной клетки сетчатки к свету, является вполне определенным: это чрезвычайно медленный подъем или снижение (см. ниже) чувствительности собственного нервного центра сетчатки. Если сетчатка спонтанно активна, как это бывает у большинства хороших препаратов, то после раздражения ретикулярной системы происходит очень сильное повышение частоты спонтанных разрядов сетчатки. При применении в качестве теста раздражения светом эффект в некоторой степени заключается в повышении частоты импульсов; однако столь же обычным, а иногда и более частым эффектом является удлинение продолжительности разряда. В очень активных препаратах вся картина реакции меняется таким образом, что она растягивается в стойкий разряд импульсов, в котором реакция на включение и выключение проявляется в виде временного повышения частоты импульса. Практически в случаях сильного эффекта часто трудно выделить из реакции отдельные разряды, возникающие в ответ на включение
и выключение света. Несмотря на то, что напрашивается много соблазнительных выводов, представленные данные получены столь недавно, что было бы преждевременным строить предположения относительно их значения. Однако, воздавая должное проницательности Кахала, я хотел бы привести его слова: «Мы уже имели случай отметить, что эффективные волокна передают из мозга необходимое для функционирования сетчатки определенное влияние — нечто вроде напряжения или энергии, необходимых для хорошего проведения возбуждения» (Кахал, 1904, стр. 644). То, что было им постулировано, являлось, таким образом, в некотором роде реакцией активации!

Поднятый вопрос касается различных теоретических и экспериментальных проблем, имеющих общий нейрофизиологический интерес. Следует указать еще на одну его сторону, для того чтобы стало понятным, почему необходима известная осторожность в вопросе о регуляции сетчатки головным мозгом. При помощи стереотаксического прибора Хорсля—Кларка можно подвести раздражающие игольчатые электроды к претекстальной и колликулярной областям и подойти к местам, в которых волокна зрительного нерва, идущие из латерального коленчатого тела, проникают в эти структуры. Таким образом, можно установить контакт с относительно небольшим числом волокон зрительного нерва на границе между претекстальной областью и верхним коллимиком. Далее можно вызвать соответствующее быстрое колебание потенциала (пик) в одиночной ганглиозной клетке сетчатки. На фиг. 50, A кривые \(k \) представляют две контрольные реакции на свет, которым предшествовало одиночное раздражение указанного выше участка, вызывающее такой же пик, как и действие света. Создавая условия столкновения пиков центрального происхождения с пиками, вызванными естественным раздражителем (светом), устанавливают их идентичность. На фиг. 50, A показаны импульсы, отводимые от сетчатки при раздражении колликулярной области в частом ритме в течение 7 сек. (кривые 1—6). При этом так же, как и в опыте, результаты которого приведены на фиг. 48, создается сильное посттетаническое облегчение. Однако для получения этого эффекта необходимо иметь возможность вызывать путем раздражения соответствующие импульсы. Если электроды сдвигают вверх или вниз таким образом, что импульсы в сетчатке более не возникают в ритме раздражения, то посттетаническое усиление или совсем не вызывается, или очень невелико. В этих условиях его можно получить только на препарате изолированного мозга (по Бремеру), погруженная игольчатые электроды в ретикулярную формуацию. Для стимуляции последней требуются гораздо более сильные электрические раздражения. Следует обратить особое внимание на то, что влияния со стороны ретикулярной системы, подобные наблюдаемым на фиг. 48 и 49, происходят без появления следующих за раздражением импульсов в ганглиозных или в других соседних клетках.
На фиг. 50, Б кривая ар снова показывает, что пики вызываются раздражением вышележащих отделов. Конец реакции на включение и начало реакции на выключение отчетливо видны на кривых к. В этом случае эффектом тетанизации является очень сильное преходящее торможение. Наконец, торможение было получено при довольно редком ритме раздражения и локализации электродов внутри верхнего холмика (фиг. 50, В). Нетрудно заметить, что в этом случае импульсы от сетчатки не отводятся.

Представленные записи показывают основные типы эффектов, полученных до сих пор на сетчатке в ответ на тетаническое раздражение отделов среднего мозга, включая концевые разветвления волокон зрительного нерва в этой области. Кривые, представленные на фиг. 50, показывают, как мало можно получить дополнительных сведений при проведении такого рода анализа на уровне зрительного тракта, или зрительного нерва. Наблюдаются как возбуждение, так и торможение, и чем больше раздражается волокон, тем сложнее суммарное выражение этих противоположных эффектов. Возможно также, что существует специальное последствие в случае следования пиков в сетчатке за ритмом раздражения среднего мозга, и по этой причине зрительные тракты оказываются неподходящими для анализа. Иногда мне удается получать из зрительного тракта облегчение указанного выше типа, но, как правило, наблюдалось торможение. Существует также необычное медленно развивающееся торможение, которое вполне может быть сосудистого происхождения. В настоящее время сосудистые эффекты изучаются1. Эффект же облегчения после раздражения среднего мозга проявляется столь мощно при пороговых силах и в лучших опытах имеет настолько большую величину, что, вероятно, он, хотя бы отчасти, имеет нейрональное происхождение. При этом даже во время раздражения наряду с импульсами, возникающими в ритме раздражения, появляются изолированные пики, образующие независимый от раздражения разряд, а если раздражение продолжается слишком долго, то возникает интенсивная импульсация.

То особое облегчение, которое связано со следованием пиков в сетчатке за ритмом раздражения среднего мозга, практически представляет собой антидромное посттетаническое облегчение; однако трудно, не колеблясь, считать это явление идентичным другим известным эффектам посттетанического облегчения. Оно не получается на каждой ганглиозной клетке, но если обнаруживается, то бывает выражено исключительно четко. Для других структур известно только ортодромное, или нормально направленное, посттетаническое облегчение. Ларраби и Бронк (1947),

1 Сосудистые эффекты в ответ на раздражение ретикулярной формации описаны Ингваром (1954), который изучал под микроскопом сосуды коры. Позже (в нашей лаборатории) он наблюдал эти эффекты в сетчатке. Часть эффекта активации может поэтому зависеть от изменений в кровообращении.
Ф и г. 50. Электрическая реакция сетчатки кошки.

A. Кошка под хлоралозино-диаловым наркозом. Раздражение по методике Хорсли—Кларка. κ — контроль; одиночное антидромное раздражение поверхности контралатерального холмика вызывает в сетчатке пики, улавливаемый микроэлектродом; раздражение дается одновременно со вспышкой света интенсивностью 40 лк, в ответ на которую возникают такие же пики. 1 и 6 — первая и последняя записи при на- несении на поверхность холмика раздражения с частотой 333 стимула в 1 сек. в течение примерно 6,6 сек.; 7—11 — тестовые раздражения светом той же интенсивности при интервалах между записями 1,1 сек. показывают повышение возбудимости (посттетаническое облегчение), которое из-за наркоза непрерывно. Регистрацию в каждом случае прерывали до прекращения вспышки света.

B. Кураризированная кошка под небуталовым наркозом. Раздражение как на фиґ. A. ap — более быстрая запись для демонстрации пики, вызывающего в сетчатке при антидромном раздражении; κ — контроль при действии света интенсивностью 500 лк (видно окончание реакции на включение и начало реакции на включение). 9 — последняя запись в конце антидромного раздражения с частотой 270 стимулов в 1 сек., длившегося в течение примерно 10 сек.; 10—15 — такие же световые тесты при интервалах между записями 1,1 сек. Результатом в этом случае, требующем высокой частоты стимуляции было торможение эффекта антидромного раздражения. Здесь, как и на фиґ. A., типичный эффект состоит в уменьшении высоты пикив.

B. Препарат изолированного мозга курализированной кошки. Раздражение электроды внутри верхнего холмика на 2 мм выше нулевой точки Хорсли—Кларка. κ — контроль при действии света интенсивностью 3 лк; реакция на включение. 1 и 18—20 — первая и три последние записи при раздражении с частотой 47 стимулов в 1 сек. в течение 22 сек.; в этом случае нет эффекта антидромного раздражения; 21—24 — действие света той же интенсивности при интервалах между записями 1,1 сек.; видно торможение.

Во всех случаях отклонение, даваемое фотоэлементом вверх, показывает период действия света, а отклонение вниз — период темноты. Отметка времени 50 пер/сек.
описывающую это явление для клеток симпатического ганглия, обнаружили угнетение только после антидромной тетанизации. Существует также угнетение после антидромного раздражения клеток передних рогов спинного мозга (см. обзор Экклса, 1953) или нейронов глазодвигательного нерва (Лоренте де Ньо и Грэхэм, 1938), но эти эксперименты, по-видимому, нужно считать ненадежными из-за наличия возвратных коллатералей аксона, которые, согласно Кахалу (1899), обнаруживаются во всех нервных центрах. Как указывалось выше, они не были обнаружены в сетчатке.

Интересно заметить, что, по данным Гартлейна, Вагнера и Томита (1953; ср. Гартлейн, 1949), антидромное раздражение нервных волокон глаза Limulus может тормозить разряд импульсов в нераздражаемом изолированном волокне, отходящем от соседнего омматидия. По-видимому, антидромный стимул активирует тормозные горизонтальные связи омматидиев, по которым, как обнаружили Гартлейн и сотрудники (Гартлейн и др., 1952, 1953), передается влияние от освобожденного омматидиа на соседний. Ганглиозные клетки сетчатки не гомологичны омматидиям Limulus, но тем не менее возможно, что построение тормозного механизма у них сходно. Догель (1895) в свое время описал два типа эфферентных волокон в сетчатке. Кахал (1904) отрицал существование второго типа волокон, но описал различные типы разветвлений. Нужны, однако, еще дальнейшие исследования, чтобы окончательно исключить возможность сосудистых эффектов. Тормозной эффект (см. фиг. 50, B) развивается быстро и, несомненно, является подлинно нервным. Возбуждающие ретикулярные эффекты, не связанные с навязыванием ритма раздражения среднего мозга, лучше всего получаются на хороших препаратах изолированного мозга при интенсивности раздражения 5—10 в. Облегчение при навязыванном ритме (антидромное посттетаническое облегчение) может быть получено, даже несмотря на наркоз, при пороговой интенсивности раздражения (1—3 в).

Время от времени высказывали мнение, что эфферентная сигнализация в самой центральной нервной системе может находиться под регулирующим контролем (например, Хед и Холмс, 1911; Броуер, 1933; Пиль, 1942). Так, Броуер считал, что ряд нисходящих систем воздействует на рефлекторную дугу в ее эфферентной части, а многие оканчиваются в центрах, связанных только с чувствительными функциями. Дюссер-де-Барен с сотрудниками (см., например, Дюссер-де-Барен, 1934; Дюссер де Барен и Мак-Келлох, 1938) установили кортикоталамическую регуляцию. Недавно Хагбарт и Кер (1953, 1954) добились успеха в разработке опытов, которые позволили начать исследование этих проблем на уровне спинного мозга и, таким образом, являются значительным шагом вперед. Эти авторы раздражали задний корешок L7 у кошки одиночными толчками прямоугольного тока и проводили осциллограммическую регистрацию от задних столбов или от части раздражаемого заднего корешка. Кончик регистри-
рующего игольчатого электрода находился в правом заднем столбце на глубине нескольких десятых миллиметра и на 9 см выше места вхождения раздражаемого заднего корешка, часть которого расщепляли для одновременной регистрации так называемого заднекорешкового рефлекса. В задних столбах в ответ на каждое раздражение возникает быстрый потенциал действия.

Фиг. 51. Изменение спинномозговых биоэлектрических реакций при раздражении ретикулярной формации продольгатого мозга (Хагбарт и Кер, 1954).

A — заднекорешковый рефлекс (I) и реакция в заднем столбе (II); B — заднекорешковый рефлекс (I) и отрицательный потенциал (II), отводимый от поверхности спинного мозга в области заднего корешка. 1 — до раздражения; 2 — во время раздражения; 3 — после раздражения. Отметка времени 1 мсек. Препарат изолированного мозга курализированной кошки.

типа пика, вслед за которым следует более продолжительный разряд, обусловленный вставочными нейронами (см. Харш, 1940). На периферии этому продолжительному разряду соответствует так называемый заднекорешковый рефлекс (Баррон и
Меттюс, 1935; Теннис, 1938; Баррон, 1940). Как разряд в задних столбах, идущий через вставочные нейроны, так и заднекорешковый рефлекс угнетаются при раздражении ретикулярной формации продолговатого и среднего мозга, вентромедиальной части переднего червячка мозжечка, прецентральной области коры, первичных сенсорных зон коры и так называемой вторичной соматосенсорной области. Соответствующие примеры представлены на фиг. 51, A. Применяли раздражения с частотой около 100 стимулов в 1 сек. Ясно видно, что первичное быстрое колебание потенциала остается неизменным. Так называемый промежуточный медленный потенциал вставочных нейронов спинного мозга, описанный Хьюгсон и Гассером (1934), при таком раздражении угнетается (фиг. 51, B).

Приведенных примеров должно быть достаточно, чтобы подчеркнуть, что необходимо обратить внимание на механизмы обратной связи и прямую регуляцию сенсорной импульсации со стороны головного мозга. Наиболее исследованный из этих механизмов — эфирентная регуляция мышечных веретен — будет детально рассмотрен в гл. VI и VII. Примеры приведены для того, чтобы показать широту этих вопросов и необходимость их изучения в свете изложенного выше относительно спонтанной активности и реакции пробуждения. Существуют, конечно, и некоторые другие стороны общей проблемы эфирентной регуляции (см. гл. VII), но мы все еще не обладаем достаточными данными, чтобы разбирать их (за исключением частного случая мышечного веретена).